<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META content="text/html; charset=iso-8859-1" http-equiv=Content-Type>
<META name=GENERATOR content="MSHTML 8.00.6001.23507">
<STYLE></STYLE>
</HEAD>
<BODY bgColor=#ffffff>
<DIV><FONT size=2 face=Arial>That's how I do it.</FONT></DIV>
<DIV><FONT size=2 face=Arial></FONT> </DIV>
<BLOCKQUOTE
style="BORDER-LEFT: #000000 2px solid; PADDING-LEFT: 5px; PADDING-RIGHT: 0px; MARGIN-LEFT: 5px; MARGIN-RIGHT: 0px">
<DIV style="FONT: 10pt arial">----- Original Message ----- </DIV>
<DIV
style="FONT: 10pt arial; BACKGROUND: #e4e4e4; font-color: black"><B>From:</B>
<A title=goldfingas@gmail.com href="mailto:goldfingas@gmail.com">Goldfinga
Productions</A> </DIV>
<DIV style="FONT: 10pt arial"><B>To:</B> <A title=rwp@reaaccess.com
href="mailto:rwp@reaaccess.com">Reapers Without Peepers</A> </DIV>
<DIV style="FONT: 10pt arial"><B>Sent:</B> Sunday, August 11, 2013 12:21
AM</DIV>
<DIV style="FONT: 10pt arial"><B>Subject:</B> Re: [RWP] poise</DIV>
<DIV><BR></DIV>I will have to learn this set up.<BR>I guess I will have to
open up one of these files in a text editor to see what it looks
like.<BR>Maybe notepad.<BR><BR>On Aug 10, 2013, at 8:40 PM, "Chris Belle"
<<A href="mailto:cb1963@sbcglobal.net">cb1963@sbcglobal.net</A>>
wrote:<BR><BR>> There is a menu to load samples or sfz files which control
sample playback.<BR>> <BR>> What makes sfz so groovy is sfz files
are just text files which refer to samples there for a completely accesssible
sample playback system for blind folks.<BR>> <BR>> YOu can load
sound fonts too, but there are advantages to sfz file formats, you give up
things like banks and multiple<BR>> sound sets but the sfz format is way
more flexible and configurable than the old sound font system.<BR>>
<BR>> But I have tons of these so sfz serves both for old and
new.<BR>> <BR>> I will forward the basic manual I have which you
can dive in to and will show you how sfz works.<BR>> Also many keyboards
and synths can now use sfz it's a totally open standard.<BR>>
<BR>> YOu can just cook up your wave files, or samples with loop info or
other meta information in them and sfz will work with it.<BR>>
<BR>> <BR>> Here goes.<BR>> <BR>> The sfz Format:
Basics<BR>> What's The sfz Format?<BR>> The sfz format is a file format
to define how a collection of samples are arranged<BR>> for
performance.<BR>> The goal behind the sfz format is to provide a free,
simple, minimalistic and<BR>> expandable format to arrange, distribute and
use audio samples with the highest possible<BR>> quality and the highest
possible performance flexibility.<BR>> A sfz format file can be played in
our freeware sfz player.<BR>> Soundware, software and hardware developers
can create, use and distribute the sfz<BR>> format<BR>> files for
free, for either free or commercial applications.<BR>> Some of the features
of the sfz format are:<BR>> - Samples of any bit depth (8/16/24/32-bit)
support, mono or stereo.<BR>> - Samples taken at any samplerate (i.e.
44.1k, 48k, 88.2k, 96k, 176.4k, 192k, 384k).<BR>> - Compressed samples.
Compressed and uncompressed can be combined.<BR>> - Looped samples.<BR>>
- Unlimited keyboard splits and layers.<BR>> - Unlimited velocity splits
and layers.<BR>> - Unlimited regions of sample playback based on MIDI
controllers (continuous controllers,<BR>> pitch bend, channel and
polyphonic aftertouch, keyboard switches) and internal generators<BR>>
(random, sequence counters).<BR>> - Sample playback on MIDI control
events.<BR>> - Unlimited unidirectional and bidirectional exclusive regions
(mute groups).<BR>> - Unlimited release trigger regions with release
trigger attenuation control.<BR>> - Unlimited crossfade controls.<BR>> -
Trigger on first-note and legato notes.<BR>> - Sample playback synchronized
to host tempo.<BR>> - Dedicated Envelope Generators for pitch, filter and
amplifier.<BR>> - Dedicated LFO for pitch, filter and amplifier.<BR>>
How the sfz format is structured?<BR>> The sfz format is a collection of
sample files<BR>> plus one or multiple .sfz definition files. This
structure, containing multiple files<BR>> instead of a single file is
defined as non-monolithic.<BR>> Two kinds of sample files were selected to
be included in the sfz<BR>> format: a basic PCM uncompressed format
(standard Windows wave files) and a basic,<BR>> adjustable-quality, royalty
free compressed format (ogg-vorbis encoded files).<BR>> The inclusion of a
compressed format allows sample developers and soundware creators<BR>> to
easily create preview or demonstration files in a small package so they can
be<BR>> transferred with minimum bandwidth, while retaining complete
performance functionality.<BR>> Both formats are 100% royalty-free, so
players can be created to reproduce them without<BR>> fixed or per-copy
fees. They can also be freely distributed on the web (provided<BR>> that
the contents of the files are copyright cleared).<BR>> Each .sfz definition
file represents one or a collection of instruments. An instrument<BR>> is
defined as a collection of regions<BR>> . Regions include the definition
for the input controls, the samples (the wav/ogg<BR>> files) and the
performance parameters to play those samples.<BR>> How the .sfz definition
file is created?<BR>> A .sfz definition file is just a text file.
Consequently, it can be created by using<BR>> any text editor (i.e.
Notepad).<BR>> Why non-monolithic?<BR>> While both monolithic and
non-monolithic formats have advantages and disadvantages,<BR>> there are
several reasons which moved us to adopt a non-monolithic sample
format.<BR>> Technological and conceptual reasons can hardly be separated,
so here's a basic explanation.<BR>> The most important reason is the file
size limitation of a non-monolitic file on<BR>> FAT32 partitions. Samples
are getting really big nowadays, with thousands of individual<BR>> samples
collected in single instruments, and triggered according to many input
control<BR>> combinations.<BR>> Samples with high bit resolution (i.e.
24-bit samples) and high samplerate settings<BR>> (96kHz, 192kHz) make the
collection size even bigger. In the case of a non-monolithic<BR>> format,
the limitation still applies, but it applies to each sample instead of
to<BR>> the sum of all samples, making the limit virtually
unreachable.<BR>> While this limitation doesn't apply to NTFS, NTFS
partitions are less efficient than<BR>> FAT32 disks in terms of raw disk
performance for streaming applications.<BR>> Additionally, editing a single
sample in a monolithic file implies loading the whole<BR>> file, and after
edit, saving the whole file again to disk. When collection size is<BR>>
big, the loading and saving operation is very time-consuming.<BR>> However,
we have not discharged the possibility of incorporating a monolithic
format<BR>> for the sfz<BR>> format, as soon as the format structure is
completely implemented. Small sound sets<BR>> (or NTFS users) could chose
between the two options appropriately.<BR>> Why not XML?<BR>> XML was
actually the first choice for the .sfz definition file, mainly due the
simplicity<BR>> from the development point of view as the XML parser and
transaction code is already<BR>> available.<BR>> However, XML was
designed to exchange data over the web. Musicians, players, composers,<BR>>
soundware developers and audio technicians generally do not know about XML at
all.<BR>> In addition, as a universal information exchange format designed
for general-purpose<BR>> applications, XML is inefficient (in terms of
information over total data terms),<BR>> and editing a XML file requires
the use of a XML editor instead of a text editor.<BR>> A .sfz file is
extremely self-explanatory. Most of the functionality of an instrument<BR>>
can be easily discovered by reading the file.<BR>> Is there a .sfz
dedicated editor?<BR>> From rgc:audio, not yet... and not anytime
soon.<BR>> However, we're working with several developers in the industry,
creators of sample-conversion<BR>> software to implement the .sfz format in
their converters and editors.<BR>> The nature of the format allows creating
instruments using other general-purpose<BR>> software, like spreadsheets,
wordprocessors, simple-scripting languages and other<BR>> custom tailored
software applications.<BR>> Implementation<BR>> How an instrument is
defined?<BR>> The basic component of an instrument is a region<BR>> . An
instrument then, is defined by one or more regions. Multiple regions can
be<BR>> arranged in a<BR>> group. Groups allow entering common
parameters for multiple regions.<BR>> A region can include three main
components: the definition for a sample, a set of<BR>> input controls and a
set of<BR>> performance parameters<BR>> .<BR>> Sample<BR>> The
sample opcode defines which sample file will be played when the region is
defined<BR>> to play.<BR>> If a sample opcode is not present in the
region, the region will play the sample<BR>> defined in the last
<group><BR>> . If there's no previous group defined, or if the
previous group doesn't specify<BR>> a<BR>> sample opcode, the region
will be ignored.<BR>> Input Controls<BR>> Input controls define
when<BR>> the sample defined in a region will play, based in real-world
controller values and/or<BR>> internally calculated values.<BR>>
Real-world controllers are the elements that players, musicians or composers
actually<BR>> use to play music. Internal values are calculated by the
player, like sequence counters<BR>> and random generators.<BR>> The
sfz<BR>> format relies in the standard Musical Instruments Digital
Interface (MIDI) specification<BR>> for all input controls. Most available
performance controllers implement MIDI, and<BR>> it's still the dominating
specification for software audio sequencers in all platforms.<BR>> Keyboard
controllers are the most significant example of an Input Controls
generator.<BR>> Other generators could be MIDI guitars and string
instruments, wind controllers,<BR>> drum and percussion controllers. With
individual differences, they all generate a<BR>> common set of messages
defined in the MIDI specification.<BR>> A set of input controls then, are
the combination of a played MIDI note with its<BR>> velocity, continuous
controllers, pitch bend, channel and polyphonic aftertouch,<BR>>
etc.<BR>> When a particular set of input controls matches the definition
for a region, the<BR>> sample specified in that region plays, using a
particular set of performance parameters<BR>> also specified in the
region.<BR>> Inside the definition file, a region starts with the
<region> header. A region is<BR>> defined between two
<region><BR>> headers, or between a<BR>> <region>
header and a <group> header, or between a <region> header and the
end of<BR>> the file,.<BR>> Following the <region><BR>> header
one or more opcodes can be defined. The opcodes are special keywords
which<BR>> instruct the player on what, when and how to play a
sample.<BR>> Opcodes within a region can appear in any order, and they have
to be separated by<BR>> one or more spaces or tabulation controls. Opcodes
can appear in separated lines<BR>> within a region.<BR>> Opcodes and
assigned opcode values are separated by the equal to sign (=<BR>> ),
without spaces between the opcode and the sign. For instance:<BR>>
sample=trombone_a4_ff.wav<BR>> sample=cello_a5_pp first take.wav<BR>>
are valid examples, while:<BR>> sample = cello_a4_pp.wav<BR>> Is not
(note the spaces at the sides of the = sign).<BR>> Input Controls and
Performance Parameters opcodes are optional, so they might not<BR>> be
present in the definition file. An 'expectable' default value for each
parameter<BR>> is pre-defined, and will be used if there's no
definition.<BR>> Example region definitions:<BR>> <region>
sample=440.wav<BR>> This region definition instructs the player to play the
sample file '440.wav' for<BR>> the whole keyboard range.<BR>>
<region> lokey=64 hikey=67 sample=440.wav<BR>> This region features a
very basic set of input parameters (lokey and hikey<BR>> , which represent
the low and high MIDI notes in the keyboard), and the sample
definition.<BR>> This instructs the player to play the sample '440.wav', if
a key in the 64-67 range<BR>> is played.<BR>> It is very important to
note that all Input Controls defined in a region act using<BR>> the AND
boolean operator. Consequently, all conditions must be matched for the
region<BR>> to play. For instance:<BR>> <region> lokey=64 hikey=67
lovel=0 hivel=34 locc1=0 hicc1=40 sample=440.wav<BR>> This region
definition instructs the player to play the sample '440.wav' if there<BR>>
is an incoming note event in the 64-67 range AND the note has a velocity in
the 0~34<BR>> range AND last modulation wheel (cc1) message was in the 0~40
range.<BR>> Performance parameters<BR>> The Performance Parameters
define how the sample specified will play, once the region<BR>> is defined
to play.<BR>> A simple example of a Performance Parameter is volume. It
defines how loud the sample<BR>> will be played when the region
plays.<BR>> Groups<BR>> As previously stated, groups allow entering
common parameters for multiple regions.<BR>> A group is defined with the
<group><BR>> opcode, and the parameters enumerated on it last till
the next group opcode, or till<BR>> the end of the file.<BR>>
<group><BR>> ampeg_attack=0.04 ampeg_release=0.45<BR>>
<region> sample=trumpet_pp_c4.wav key=c4<BR>> <region>
sample=trumpet_pp_c#4.wav key=c#4<BR>> <region>
sample=trumpet_pp_d4.wav key=d4<BR>> <region>
sample=trumpet_pp_d#4.wav key=d#4<BR>> <group><BR>> <region>
sample=trumpet_pp_e4.wav key=e4 // previous group parameters reset<BR>>
Comments<BR>> Comment lines can be inserted anywhere inside the file. A
comment line starts with<BR>> the slash character ('/'), and it extends
till the end of the line.<BR>> <region><BR>>
sample=trumpet_pp_c4.wav<BR>> // middle C in the keyboard<BR>>
lokey=60<BR>> // pianissimo layer<BR>> lovel=0 hivel=20 // another
comment<BR>> Where the sample files have to be stored?<BR>> Sample files
can be stored either in the same folder where the .sfz definition file<BR>>
resides, or in any alternative route, specified relatively to the location of
the<BR>> definition file. Consequently:<BR>>
sample=trumpet_pp_c3.wav<BR>> sample=samples\trumpet_pp_c3.wav<BR>>
sample=..\trumpet_pp_c3.wav<BR>> Are all valid sample names.<BR>>
Alternatively, the player might specify one or several 'user folders', where
it will<BR>> search for samples if it doesn't find them in the same folder
as the definition file.<BR>> What the sfz format can do?<BR>> The sfz
format is aimed to allow the arrange of a sample collection in a
flexible<BR>> and expandable way. It's up to the player to decide which
functionality it wants<BR>> to implement.<BR>> Units<BR>> All units
in the sfz format are in real-world values. Frequencies are expressed
in<BR>> Hertz, pitches in cents, amplitudes in percentage and volumes in
decibels.<BR>> Notes are expressed in MIDI Note Numbers, or in note names
according to the International<BR>> Pitch Notation (IPN) convention.
According to this rules, middle C in the keyboard<BR>> is C4 and the MIDI
note number 60.<BR>> Opcode list<BR>> The following is a description of
all valid opcodes for the sfz format version 1.0:<BR>> Opcode<BR>>
Description<BR>> Type<BR>> Default<BR>> Range<BR>> Sample
Definition<BR>> sample<BR>> This opcode defines which sample file the
region will play.<BR>> The value of this opcode is the filename of the
sample file, including the extension.<BR>> The filename must be stored in
the same folder where the definition file is, or specified<BR>> relatively
to it.<BR>> If the sample file is not found, the player will ignore the
whole region contents.<BR>> Long names and names with blank spaces and
other special characters (excepting the<BR>> = character) are allowed in
the sample definition.<BR>> The sample will play unchanged when a note
equal to the<BR>> pitch_keycenter opcode value is played. If<BR>>
pitch_keycenter<BR>> is not defined for the region, sample will play
unchanged on note 60 (middle C).<BR>> Examples:<BR>>
sample=guitar_c4_ff.wav<BR>> sample=dog kick.ogg<BR>> sample=out of tune
trombone (redundant).wav<BR>> sample=staccatto_snare.ogg<BR>>
string<BR>> (filename)<BR>> n/a<BR>> n/a<BR>> Input
Controls<BR>> lochan<BR>> hichan<BR>> If incoming notes have a MIDI
channel between<BR>> lochan and hichan, the region will play.<BR>>
Examples:<BR>> lochan=1 hichan=5<BR>> integer<BR>> lochan=1<BR>>
hichan=16<BR>> 1 to 16<BR>> lokey<BR>> hikey<BR>> key<BR>> If a
note equal to or higher than lokey<BR>> AND equal to or lower
than<BR>> hikey is played, the region will play.<BR>> lokey and
hikey<BR>> can be entered in either MIDI note numbers (0 to 127) or
in MIDI note names (C-1<BR>> to G9)<BR>> The key opcode sets lokey,
hikey and<BR>> pitch_keycenter to the same note.<BR>> Examples:<BR>>
lokey=60 // middle C<BR>> hikey=63 // middle D#<BR>> lokey=c4 // middle
C<BR>> hikey=d#4 // middle D#<BR>> hikey=eb4 // middle Eb (D#)<BR>>
integer<BR>> lokey=0, hikey=127<BR>> 0 to 127<BR>> C-1 to G9<BR>>
lovel<BR>> hivel<BR>> If a note with velocity value equal to or higher
than<BR>> lovel AND equal to or lower than hivel<BR>> is played,
the region will play.<BR>> integer<BR>> lovel=0,<BR>>
hivel=127<BR>> 0 to 127<BR>> loccN<BR>> hiccN<BR>> Defines the
range of the last MIDI controller N required for the region to play.<BR>>
Examples:<BR>> locc74=30 hicc74=100<BR>> The region will play only if
last MIDI controller 74 received was in the 30~100 range.<BR>>
integer<BR>> locc=0, hicc=127<BR>> for all controllers<BR>> 0 to
127<BR>> lobend<BR>> hibend<BR>> Defines the range of the last Pitch
Bend message required for the region to play.<BR>> Examples:<BR>>
lobend=0 hibend=4000<BR>> The region will play only if last Pitch Bend
message received was in the 0~4000 range.<BR>> integer<BR>>
lobend=-8192, hibend=8192<BR>> -8192 to 8192<BR>> lochanaft<BR>>
hichanaft<BR>> Defines the range of last Channel Aftertouch message
required for the region to play.<BR>> Examples:<BR>> lochanaft=30
hichanaft=100<BR>> The region will play only if last Channel Aftertouch
message received was in the<BR>> 30~100 range.<BR>> integer<BR>>
lochanaft=0, hichanaft=127<BR>> 0 to 127<BR>> lopolyaft<BR>>
hipolyaft<BR>> Defines the range of last Polyphonic Aftertouch message
required for the region to<BR>> play.<BR>> The incoming
note<BR>> information in the Polyphonic Aftertouch message is not
relevant.<BR>> Examples:<BR>> lopolyaft=30 hipolyaft=100<BR>> The
region will play only if last Polyphonic Aftertouch message received was in
the<BR>> 30~100 range.<BR>> integer<BR>> lopolyaft=0,
hipolyaft=127<BR>> 0 to 127<BR>> lorand<BR>> hirand<BR>> Random
values. The player will generate a new random number on every note-on
event,<BR>> in the range 0~1.<BR>> The region will play if the random
number is equal to or higher than<BR>> lorand, and lower than
hirand.<BR>> Examples:<BR>> lorand=0.2 hirand=0.4<BR>> lorand=0.4
hirand=1<BR>> floating point<BR>> lorand = 0<BR>> hirand = 1<BR>>
0 to 1<BR>> lobpm<BR>> hibpm<BR>> Host tempo value. The region will
play if the host tempo is equal to or higher than<BR>> lobpm<BR>>
, and lower than<BR>> hibpm.<BR>> Examples:<BR>> lobpm=0
hibpm=100<BR>> lobpm=100 hibpm=200.5<BR>> floating point<BR>> lobpm =
0<BR>> hibpm = 500<BR>> 0 to 500 bpm<BR>> seq_length<BR>> Sequence
length. The player will keep an internal counter creating a
consecutive<BR>> note-on sequence for each region, starting at 1 and
resetting at<BR>> seq_length.<BR>> Examples:<BR>>
seq_length=3<BR>> integer<BR>> 1<BR>> 1 to 100<BR>>
seq_position<BR>> Sequence position. The region will play if the internal
sequence counter is equal<BR>> to<BR>> seq_position.<BR>>
Examples:<BR>> seq_length=4 seq_position=2<BR>> In above example, the
region will play on the second note every four notes.<BR>> integer<BR>>
1<BR>> 1 to 100<BR>> sw_lokey<BR>> sw_hikey<BR>> Defines the range
of the keyboard to be used as trigger selectors for the<BR>> sw_last
opcode.<BR>> sw_lokey and sw_hikey<BR>> can be entered in either
MIDI note numbers (0 to 127) or in MIDI note names (C-1<BR>> to G9)<BR>>
Examples:<BR>> sw_lokey=48 sw_hikey=53<BR>> integer<BR>> sw_lokey=0,
sw_hikey=127<BR>> 0 to 127<BR>> C-1 to G9<BR>> sw_last<BR>>
Enables the region to play if the last key pressed in the range specified
by<BR>> sw_lokey and sw_hikey<BR>> is equal to the<BR>> sw_last
value.<BR>> sw_last<BR>> can be entered in either MIDI note numbers (0
to 127) or in MIDI note names (C-1<BR>> to G9)<BR>> Examples:<BR>>
sw_last=49<BR>> integer<BR>> 0<BR>> 0 to 127<BR>> C-1 to
G9<BR>> sw_down<BR>> Enables the region to play if the key equal
to<BR>> sw_down value is depressed.<BR>> Key has to be in the range
specified by sw_lokey<BR>> and sw_hikey.<BR>> sw_down<BR>> can be
entered in either MIDI note numbers (0 to 127) or in MIDI note names
(C-1<BR>> to G9)<BR>> Examples:<BR>> sw_down=Cb3<BR>>
integer<BR>> 0<BR>> 0 to 127<BR>> C-1 to G9<BR>> sw_up<BR>>
Enables the region to play if the key equal to sw_up<BR>> value is
not depressed.<BR>> Key has to be in the range specified by
sw_lokey<BR>> and sw_hikey.<BR>> sw_up<BR>> can be entered in either
MIDI note numbers (0 to 127) or in MIDI note names (C-1<BR>> to G9)<BR>>
Examples:<BR>> sw_up=49<BR>> integer<BR>> 0<BR>> 0 to 127<BR>>
C-1 to G9<BR>> sw_previous<BR>> Previous note value. The region will
play if last note-on message was equal to<BR>> sw_previous value.<BR>>
sw_previous<BR>> can be entered in either MIDI note numbers (0 to 127) or
in MIDI note names (C-1<BR>> to G9)<BR>> Examples:<BR>>
sw_previous=60<BR>> integer<BR>> none<BR>> 0 to 127<BR>> C-1 to
G9<BR>> sw_vel<BR>> This opcode allows overriding the velocity for the
region with the velocity of the<BR>> previous note. Values can be:<BR>>
current: Region uses the velocity of current note.<BR>> previous<BR>> :
Region uses the velocity of the previous note.<BR>> Examples:<BR>>
sw_vel=previous<BR>> text<BR>> current<BR>> current, previous<BR>>
trigger<BR>> Sets the trigger which will be used for the sample to play.
Values can be:<BR>> attack (default): Region will play on note-on.<BR>>
release:<BR>> Region will play on note-off. The velocity used to play
the note-off sample is the<BR>> velocity value of the corresponding
(previous) note-on message.<BR>> first:<BR>> Region will play on
note-on, but if there's no other note going on (staccato, or<BR>> first
note in a legato phrase).<BR>> legato:<BR>> Region will play on
note-on, but only if there's a note going on (notes after first<BR>> note
in a legato phrase).<BR>> Examples:<BR>> trigger=release<BR>>
integer<BR>> attack<BR>> attack,<BR>> release, first, legato<BR>>
group<BR>> Exclusive group number for this region.<BR>>
Examples:<BR>> group=3<BR>> group=334<BR>> integer<BR>> 0<BR>>
0 to 4Gb (4294967296)<BR>> off_by<BR>> Region off group. When a new
region with a group number equal to<BR>> off_by<BR>> plays, this
region will be turned off.<BR>> Examples:<BR>> off_by=3<BR>>
off_by=334<BR>> integer<BR>> 0<BR>> 0 to 4Gb (4294967296)<BR>>
off_mode<BR>> Region off mode. This opcode will determinate how a region is
turned off by an<BR>> off_by<BR>> opcode. Values can be:<BR>>
fast<BR>> (default): The voice will be turned off immediately.
Release settings will not have<BR>> any effect.<BR>> normal<BR>> :
The region will be set into release stage. All envelope generators will enter
in<BR>> release stage, and region will expire when the amplifier envelope
generator expired.<BR>> Examples:<BR>> off_mode=fast<BR>>
off_mode=normal<BR>> text<BR>> fast<BR>> fast, normal<BR>>
on_loccN<BR>> on_hiccN<BR>> Sample trigger on MIDI continuous control N.
If a MIDI control message with a value<BR>> between<BR>> on_loccN and
on_hiccN<BR>> is received, the region will play.<BR>>
Examples:<BR>> on_locc1=0 on_hicc1=0<BR>> Region will play when a MIDI
CC1 (modulation wheel) message with zero value is received.<BR>>
integer<BR>> -1 (unassigned)<BR>> 0 to 127<BR>> Performance
Parameters<BR>> Sample Player<BR>> delay<BR>> Region delay time, in
seconds.<BR>> If a delay<BR>> value is specified, the region
playback will be postponed for the specified time.<BR>> If the region
receives a note-off message before delay time, the region won't play.<BR>>
All envelope generators delay stage will start counting after region delay
time.<BR>> Examples:<BR>> delay=1<BR>> delay=0.2<BR>> floating
point<BR>> 0<BR>> 0 to 100 seconds<BR>> delay_random<BR>> Region
random delay time, in seconds.<BR>> If the region receives a note-off
message before delay time, the region won't play.<BR>> Examples:<BR>>
delay_random=1<BR>> delay_random=0.2<BR>> floating point<BR>>
0<BR>> 0 to 100 seconds<BR>> delay_ccN<BR>> Region delay time after
MIDI continuous controller N messages are received, in seconds.<BR>> If the
region receives a note-off message before delay time, the region won't
play.<BR>> Examples:<BR>> delay_cc1=1<BR>> delay_cc2=.5<BR>>
floating point<BR>> 0<BR>> 0 to 100 seconds<BR>> offset<BR>> The
offset used to play the sample, in sample units.<BR>> The player will
reproduce samples starting with the very first sample in the file,<BR>>
unless<BR>> offset<BR>> is specified. It will start playing the
file at the<BR>> offset<BR>> sample in this case.<BR>>
Examples:<BR>> offset=3000<BR>> offset=32425<BR>> integer<BR>>
0<BR>> 0 to 4 Gb (4294967296)<BR>> offset_random<BR>> Random offset
added to the region offset, in sample units.<BR>> Examples:<BR>>
offset_random=300<BR>> offset_random=100<BR>> integer<BR>> 0<BR>>
0 to 4 Gb (4294967296)<BR>> offset_ccN<BR>> The offset used to play the
sample according to last position of MIDI continuous<BR>> controller N, in
sample units.<BR>> This opcode is useful to specify an alternate sample
start point based on MIDI controllers.<BR>> Examples:<BR>>
offset_cc1=3000<BR>> offset_cc64=1388<BR>> integer<BR>> 0<BR>> 0
to 4 Gb (4294967296)<BR>> end<BR>> The endpoint of the sample, in sample
units.<BR>> The player will reproduce the whole sample if end<BR>>
is not specified.<BR>> If end value is -1, the sample will not play.
Marking a region end with -1 can be<BR>> used to use a silent region to
turn off other regions by using the<BR>> group and<BR>> off_by
opcodes.<BR>> Examples:<BR>> end=133000<BR>> end=4432425<BR>>
integer<BR>> 0<BR>> -1 to 4 Gb (4294967296)<BR>> count<BR>> The
number of times the sample will be played. If this opcode is specified, the
sample<BR>> will restart as many times as defined. Envelope generators will
not be retriggered<BR>> on sample restart.<BR>> When this opcode is
defined, loopmode is automatically set to<BR>> one_shot.<BR>>
Examples:<BR>> count=3<BR>> count=2<BR>> integer<BR>> 0<BR>> 0
to 4 Gb (4294967296)<BR>> loop_mode<BR>> If loop_mode<BR>> is
not specified, each sample will play according to its predefined loop mode.
That<BR>> is, the player will play the sample looped using the first
defined loop, if available.<BR>> If no loops are defined, the wave will
play unlooped.<BR>> The loop_mode<BR>> opcode allows playing
samples with loops defined in the unlooped mode. The possible<BR>> values
are:<BR>> no_loop:<BR>> no looping will be performed. Sample will
play straight from start to end, or until<BR>> note off, whatever reaches
first.<BR>> one_shot:<BR>> sample will play from start to end,
ignoring note off.<BR>> This mode is engaged automatically if the
count<BR>> opcode is defined.<BR>> loop_continuous:<BR>>
once the player reaches sample loop point, the loop will play until note
expiration.<BR>> loop_sustain:<BR>> the player will play the loop
while the note is held, by keeping it depressed or<BR>> by using the
sustain pedal (CC64). The rest of the sample will play after note
release.<BR>> Examples:<BR>> loop_mode=no_loop<BR>>
loop_mode=loop_continuous<BR>> text<BR>> no_loop<BR>> for
samples without a loop defined,<BR>> loop_continuous<BR>> for
samples with defined loop(s).<BR>> n/a<BR>> loop_start<BR>> The loop
start point, in samples.<BR>> If loop_start<BR>> is not specified
and the sample has a loop defined, the sample start point will<BR>> be
used.<BR>> If loop_start<BR>> is specified, it will overwrite the
loop start point defined in the sample.<BR>> This opcode will not have any
effect if loopmode is set to<BR>> no_loop.<BR>> Examples:<BR>>
loop_start=4503<BR>> loop_start=12445<BR>> integer<BR>> 0<BR>> 0
to 4 Gb (4294967296)<BR>> loop_end<BR>> The loop end point, in samples.
This opcode will not have any effect if loopmode<BR>> is set to<BR>>
no_loop.<BR>> If loop_end<BR>> is not specified and the sample
have a loop defined, the sample loop end point will<BR>> be used.<BR>>
If loop_end<BR>> is specified, it will overwrite the loop end point
defined in the sample.<BR>> Examples:<BR>> loop_end=34503<BR>>
loop_end=212445<BR>> integer<BR>> 0<BR>> 0 to 4 Gb
(4294967296)<BR>> sync_beats<BR>> Region playing synchronization to host
position.<BR>> When sync_beats<BR>> is specified and after input
controls instruct the region to play, the playback will<BR>> be postponed
until the next multiple of the specified value is crossed.<BR>>
Examples:<BR>> sync_beats=4<BR>> In this example, if note is pressed in
beat 2 of current track, note won't be played<BR>> until beat 4
reaches.<BR>> This opcode will only work in hosts featuring song position
information (vstTimeInfo<BR>> ppqPos).<BR>> floating point<BR>>
0<BR>> 0 to 32 beats<BR>> sync_offset<BR>> Region playing
synchronization to host position offset.<BR>> When sync_beats<BR>> is
specified and after input controls instruct the region to play, the playback
will<BR>> be postponed until the next multiple of the specified value plus
the<BR>> sync_offset value is crossed.<BR>> Examples:<BR>>
sync_beats=4 sync_offset=1<BR>> In this example, if note is pressed in beat
2 of current track, note won't be played<BR>> until beat 5 reaches.<BR>>
This opcode will only work in hosts featuring song position information
(vstTimeInfo<BR>> ppqPos).<BR>> floating point<BR>> 0<BR>> 0 to 32
beats<BR>> Pitch<BR>> transpose<BR>> The transposition value for this
region which will be applied to the sample.<BR>> Examples:<BR>>
transpose=3<BR>> transpose=-4<BR>> integer<BR>> 0<BR>> -127 to
127<BR>> tune<BR>> The fine tuning for the sample, in cents. Range is ±1
semitone, from -100 to 100.<BR>> Only negative values must be prefixed with
sign.<BR>> Examples:<BR>> tune=33<BR>> tune=-30<BR>>
tune=94<BR>> integer<BR>> 0<BR>> -100 to 100<BR>>
pitch_keycenter<BR>> Root key for the sample.<BR>> Examples:<BR>>
pitch_keycenter=56<BR>> pitch_keycenter=c#2<BR>> integer<BR>> 60
(C4)<BR>> -127 to 127<BR>> C-1 to G9<BR>> pitch_keytrack<BR>>
Within the region, this value defines how much the pitch changes with every
note.<BR>> Default value is 100, which means pitch will change one hundred
cents (one semitone)<BR>> per played note.<BR>> Setting this value to
zero means that all notes in the region will play the same<BR>> pitch,
particularly useful when mapping drum sounds.<BR>> Examples:<BR>>
pitch_keytrack=20<BR>> pitch_keytrack=0<BR>> integer<BR>> 100<BR>>
-1200 to 1200<BR>> pitch_veltrack<BR>> Pitch velocity tracking,
represents how much the pitch changes with incoming note<BR>> velocity, in
cents.<BR>> Examples:<BR>> pitch_veltrack=0<BR>>
pitch_veltrack=1200<BR>> integer<BR>> 0<BR>> -9600 to 9600
cents<BR>> pitch_random<BR>> Random tuning for the region, in cents.
Random pitch will be centered, with positive<BR>> and negative
values.<BR>> Examples:<BR>> pitch_random=100<BR>>
pitch_random=400<BR>> integer<BR>> 0<BR>> 0 to 9600 cents<BR>>
bend_up<BR>> Pitch bend range when Bend Wheel or Joystick is moved up, in
cents.<BR>> Examples:<BR>> bend_up=1200<BR>> bend_up=100<BR>>
integer<BR>> 200<BR>> -9600 to 9600<BR>> bend_down<BR>> Pitch bend
range when Bend Wheel or Joystick is moved down, in cents.<BR>>
Examples:<BR>> bend_down=1200<BR>> bend_down=100<BR>> integer<BR>>
-200<BR>> -9600 to 9600<BR>> bend_step<BR>> Pitch bend step, in
cents.<BR>> Examples:<BR>> bend_step=100 // glissando in
semitones<BR>> bend_step=200 // glissando in whole tones<BR>>
integer<BR>> 1<BR>> 1 to 1200<BR>> Pitch EG<BR>>
pitcheg_delay<BR>> Pitch EG delay time, in seconds. This is the time
elapsed from note on to the start<BR>> of the Attack stage.<BR>>
Examples:<BR>> pitcheg_delay=1.5<BR>> pitcheg_delay=0<BR>> floating
point<BR>> 0 seconds<BR>> 0 to 100 seconds<BR>> pitcheg_start<BR>>
Pitch EG start level, in percentage.<BR>> Examples:<BR>>
pitcheg_start=20<BR>> pitcheg_start=100<BR>> floating point<BR>> 0
%<BR>> 0 to 100 %<BR>> pitcheg_attack<BR>> Pitch EG attack time, in
seconds.<BR>> Examples:<BR>> pitcheg_attack=1.2<BR>>
pitcheg_attack=0.1<BR>> floating point<BR>> 0 seconds<BR>> 0 to 100
seconds<BR>> pitcheg_hold<BR>> Pitch EG hold time, in seconds. During
the hold stage, EG output will remain at its<BR>> maximum value.<BR>>
Examples:<BR>> pitcheg_hold=1.5<BR>> pitcheg_hold=0.1<BR>> floating
point<BR>> 0 seconds<BR>> 0 to 100 seconds<BR>> pitcheg_decay<BR>>
Pitch EG decay time, in seconds.<BR>> Examples:<BR>>
pitcheg_decay=1.5<BR>> pitcheg_decay=3<BR>> floating point<BR>> 0
seconds<BR>> 0 to 100 seconds<BR>> pitcheg_sustain<BR>> Pitch EG
sustain level, in percentage.<BR>> Examples:<BR>>
pitcheg_sustain=40.34<BR>> pitcheg_sustain=10<BR>> floating
point<BR>> 100 %<BR>> 0 to 100 %<BR>> pitcheg_release<BR>> Pitch
EG release time (after note release), in seconds.<BR>> Examples:<BR>>
pitcheg_release=1.34<BR>> pitcheg_release=2<BR>> floating point<BR>>
0 seconds<BR>> 0 to 100 seconds<BR>> pitcheg_depth<BR>> Depth for the
pitch EG, in cents.<BR>> Examples:<BR>> pitcheg_depth=1200<BR>>
pitcheg_depth=-100<BR>> integer<BR>> 0<BR>> -12000 to 12000<BR>>
pitcheg_vel2delay<BR>> Velocity effect on pitch EG delay time, in
seconds.<BR>> Examples:<BR>> pitcheg_vel2delay=1.2<BR>>
pitcheg_vel2delay=0.1<BR>> Delay time will be calculated as<BR>> delay
time = pitcheg_delay<BR>> + pitcheg_vel2delay * velocity / 127<BR>>
floating point<BR>> 0 seconds<BR>> -100 to 100 seconds<BR>>
pitcheg_vel2attack<BR>> Velocity effect on pitch EG attack time, in
seconds.<BR>> Examples:<BR>> pitcheg_vel2attack=1.2<BR>>
pitcheg_vel2attack=0.1<BR>> Attack time will be calculated as<BR>>
attack time = pitcheg_attack<BR>> + pitcheg_vel2attack * velocity /
127<BR>> floating point<BR>> 0 seconds<BR>> -100 to 100
seconds<BR>> pitcheg_vel2hold<BR>> Velocity effect on pitch EG hold
time, in seconds.<BR>> Examples:<BR>> pitcheg_vel2hold=1.2<BR>>
pitcheg_vel2hold=0.1<BR>> Hold time will be calculated as<BR>> hold time
= pitcheg_hold<BR>> + pitcheg_vel2hold * velocity / 127<BR>> floating
point<BR>> 0 seconds<BR>> -100 to 100 seconds<BR>>
pitcheg_vel2decay<BR>> Velocity effect on pitch EG decay time, in
seconds.<BR>> Examples:<BR>> pitcheg_vel2decay=1.2<BR>>
pitcheg_vel2decay=0.1<BR>> Decay time will be calculated as<BR>> decay
time = pitcheg_decay<BR>> + pitcheg_vel2decay * velocity / 127<BR>>
floating point<BR>> 0 seconds<BR>> -100 to 100 seconds<BR>>
pitcheg_vel2sustain<BR>> Velocity effect on pitch EG sustain level, in
percentage.<BR>> Examples:<BR>> pitcheg_vel2sustain=30<BR>>
pitcheg_vel2sustain=20<BR>> Sustain level will be calculated as<BR>>
sustain level = pitcheg_sustain<BR>> + pitcheg_vel2sustain<BR>> floating
point<BR>> 0 %<BR>> -100 % to 100 %<BR>> pitcheg_vel2release<BR>>
Velocity effect on pitch EG release time, in seconds.<BR>>
Examples:<BR>> pitcheg_vel2release=1.2<BR>>
pitcheg_vel2release=0.1<BR>> Release time will be calculated as<BR>>
release time = pitcheg_release<BR>> + pitcheg_vel2release * velocity /
127<BR>> floating point<BR>> 0 seconds<BR>> -100 to 100
seconds<BR>> pitcheg_vel2depth<BR>> Velocity effect on pitch EG depth,
in cents.<BR>> Examples:<BR>> pitcheg_vel2depth=100<BR>>
pitcheg_vel2depth=-1200<BR>> integer<BR>> 0 cents<BR>> -12000 to
12000 cents<BR>> Pitch LFO<BR>> pitchlfo_delay<BR>> The time before
the Pitch LFO starts oscillating, in seconds.<BR>> Examples:<BR>>
pitchlfo_delay=1<BR>> pitchlfo_delay=0.4<BR>> floating point<BR>> 0
seconds<BR>> 0 to 100 seconds<BR>> pitchlfo_fade<BR>> Pitch LFO
fade-in effect time.<BR>> Examples:<BR>> pitchlfo_fade=1<BR>>
pitchlfo_fade=0.4<BR>> floating point<BR>> 0 seconds<BR>> 0 to 100
seconds<BR>> pitchlfo_freq<BR>> Pitch LFO frequency, in hertz.<BR>>
Examples:<BR>> pitchlfo_freq=0.4<BR>> pitchlfo_freq=1.3<BR>> floating
point<BR>> 0 Hertz<BR>> 0 to 20 hertz<BR>> pitchlfo_depth<BR>>
Pitch LFO depth, in cents.<BR>> Examples:<BR>> pitchlfo_depth=1<BR>>
pitchlfo_depth=4<BR>> integer<BR>> 0 cent<BR>> -1200 to 1200
cents<BR>> pitchlfo_depthccN<BR>> Pitch LFO depth when MIDI continuous
controller N is received, in cents.<BR>> Examples:<BR>>
pitchlfo_depthcc1=100<BR>> pitchlfo_depthcc32=400<BR>> integer<BR>> 0
cent<BR>> -1200 to 1200 cents<BR>> pitchlfo_depthchanaft<BR>> Pitch
LFO depth when channel aftertouch MIDI messages are received, in
cents.<BR>> Examples:<BR>> pitchlfo_depthchanaft=100<BR>>
pitchlfo_depthchanaft=400<BR>> integer<BR>> 0 cent<BR>> -1200 to 1200
cents<BR>> pitchlfo_depthpolyaft<BR>> Pitch LFO depth when polyphonic
aftertouch MIDI messages are received, in cents.<BR>> Examples:<BR>>
pitchlfo_depthpolyaft=100<BR>> pitchlfo_depthpolyaft=400<BR>>
integer<BR>> 0 cent<BR>> -1200 to 1200 cents<BR>>
pitchlfo_freqccN<BR>> Pitch LFO frequency change when MIDI continuous
controller N is received, in hertz.<BR>> Examples:<BR>>
pitchlfo_freqcc1=5<BR>> pitchlfo_freqcc1=-12<BR>> floating point<BR>>
0 hertz<BR>> -200 to 200 hertz<BR>> pitchlfo_freqchanaft<BR>> Pitch
LFO frequency change when channel aftertouch MIDI messages are received,
in<BR>> hertz.<BR>> Examples:<BR>> pitchlfo_freqchanaft=10<BR>>
pitchlfo_freqchanaft=-40<BR>> floating point<BR>> 0 hertz<BR>> -200
to 200 hertz<BR>> pitchlfo_freqpolyaft<BR>> Pitch LFO frequency change
when polyphonic aftertouch MIDI messages are received,<BR>> in
hertz.<BR>> Examples:<BR>> pitchlfo_freqpolyaft=10<BR>>
pitchlfo_freqpolyaft=-4<BR>> floating point<BR>> 0 hertz<BR>> -200 to
200 hertz<BR>> Filter<BR>> fil_type<BR>> Filter type. Avaliable types
are:<BR>> lpf_1p: one-pole low pass filter (6dB/octave).<BR>> hpf_1p:
one-pole high pass filter (6dB/octave).<BR>> lpf_2p: two-pole low pass
filter (12dB/octave).<BR>> hpf_2p: two-pole high pass filter
(12dB/octave).<BR>> bpf_2p: two-pole band pass filter
(12dB/octave).<BR>> brf_2p<BR>> : two-pole band rejection filter
(12dB/octave).<BR>> Examples:<BR>> fil_type=lpf_2p<BR>>
fil_type=hpf_1p<BR>> text<BR>> lpf_2p<BR>> lpf_1p, hpf_1p, lpf_2p,
hpf_2p, bpf_2p, brf_2p<BR>> cutoff<BR>> The filter cutoff frequency, in
Hertz.<BR>> If the cutoff is not specified, the filter will be disabled,
with the consequent<BR>> CPU drop in the player.<BR>> Examples:<BR>>
cutoff=343<BR>> cutoff=4333<BR>> floating point<BR>> filter
disabled<BR>> 0 to<BR>> SampleRate / 2<BR>> cutoff_ccN<BR>> The
variation in the cutoff frequency when MIDI continuous controller N is
received,<BR>> in cents.<BR>> Examples:<BR>> cutoff_cc1=1200<BR>>
cutoff_cc2=-100<BR>> integer<BR>> 0<BR>> -9600 to 9600 cents<BR>>
cutoff_chanaft<BR>> The variation in the cutoff frequency when MIDI channel
aftertouch messages are received,<BR>> in cents.<BR>> Examples:<BR>>
cutoff_chanaft=1200<BR>> cutoff_chanaft=-100<BR>> integer<BR>>
0<BR>> -9600 to 9600 cents<BR>> cutoff_polyaft<BR>> The variation in
the cutoff frequency when MIDI polyphonic aftertouch messages are<BR>>
received, in cents.<BR>> Examples:<BR>> cutoff_polyaft=1200<BR>>
cutoff_polyaft=-100<BR>> integer<BR>> 0<BR>> -9600 to 9600
cents<BR>> resonance<BR>> The filter cutoff resonance value, in
decibels.<BR>> Examples:<BR>> resonance=30<BR>> floating
point<BR>> 0 dB<BR>> 0 to 40 dB<BR>> fil_keytrack<BR>> Filter
keyboard tracking (change on cutoff for each key) in cents.<BR>>
Examples:<BR>> fil_keytrack=100<BR>> fil_keytrack=0<BR>>
integer<BR>> 0 cents<BR>> 0 to 1200 cents<BR>> fil_keycenter<BR>>
Center key for filter keyboard tracking. In this key, the filter keyboard
tracking<BR>> will have no effect.<BR>> Examples:<BR>>
fil_keycenter=60<BR>> fil_keycenter=48<BR>> integer<BR>> 60<BR>> 0
to 127<BR>> fil_veltrack<BR>> Filter velocity tracking, represents how
much the cutoff changes with incoming note<BR>> velocity.<BR>>
Examples:<BR>> fil_veltrack=0<BR>> fil_veltrack=1200<BR>>
integer<BR>> 0<BR>> -9600 to 9600 cents<BR>> fil_random<BR>>
Random cutoff added to the region, in cents.<BR>> Examples:<BR>>
fil_random=100<BR>> fil_random=400<BR>> integer<BR>> 0<BR>> 0 to
9600 cents<BR>> Filter EG<BR>> fileg_delay<BR>> Filter EG delay time,
in seconds. This is the time elapsed from note on to the start<BR>> of the
Attack stage.<BR>> Examples:<BR>> fileg_delay=1.5<BR>>
fileg_delay=0<BR>> floating point<BR>> 0 seconds<BR>> 0 to 100
seconds<BR>> fileg_start<BR>> Filter EG start level, in
percentage.<BR>> Examples:<BR>> fileg_start=20<BR>>
fileg_start=100<BR>> floating point<BR>> 0 %<BR>> 0 to 100 %<BR>>
fileg_attack<BR>> Filter EG attack time, in seconds.<BR>>
Examples:<BR>> fileg_attack=1.2<BR>> fileg_attack=0.1<BR>> floating
point<BR>> 0 seconds<BR>> 0 to 100 seconds<BR>> fileg_hold<BR>>
Filter EG hold time, in seconds. During the hold stage, EG output will remain
at<BR>> its maximum value.<BR>> Examples:<BR>> fileg_hold=1.5<BR>>
fileg_hold=0.1<BR>> floating point<BR>> 0 seconds<BR>> 0 to 100
seconds<BR>> fileg_decay<BR>> Filter EG decay time, in seconds.<BR>>
Examples:<BR>> fileg_decay=1.5<BR>> fileg_decay=3<BR>> floating
point<BR>> 0 seconds<BR>> 0 to 100 seconds<BR>> fileg_sustain<BR>>
Filter EG sustain level, in percentage.<BR>> Examples:<BR>>
fileg_sustain=40.34<BR>> fileg_sustain=10<BR>> floating point<BR>>
100 %<BR>> 0 to 100 %<BR>> fileg_release<BR>> Filter EG release time
(after note release), in seconds.<BR>> Examples:<BR>>
fileg_release=1.34<BR>> fileg_release=2<BR>> floating point<BR>> 0
seconds<BR>> 0 to 100 seconds<BR>> fileg_depth<BR>> Depth for the
filter EG, in cents.<BR>> Examples:<BR>> fileg_depth=1200<BR>>
fileg_depth=-100<BR>> integer<BR>> 0<BR>> -12000 to 12000<BR>>
fileg_vel2delay<BR>> Velocity effect on filter EG delay time, in
seconds.<BR>> Examples:<BR>> fileg_vel2delay=1.2<BR>>
fileg_vel2delay=0.1<BR>> Delay time will be calculated as<BR>> delay
time = fileg_delay<BR>> + fileg_vel2delay * velocity / 127<BR>> floating
point<BR>> 0 seconds<BR>> -100 to 100 seconds<BR>>
fileg_vel2attack<BR>> Velocity effect on filter EG attack time, in
seconds.<BR>> Examples:<BR>> fil_vel2attack=1.2<BR>>
fil_vel2attack=0.1<BR>> Attack time will be calculated as<BR>> attack
time = fileg_attack<BR>> + fileg_vel2attack * velocity / 127<BR>>
floating point<BR>> 0 seconds<BR>> -100 to 100 seconds<BR>>
fileg_vel2hold<BR>> Velocity effect on filter EG hold time, in
seconds.<BR>> Examples:<BR>> fileg_vel2hold=1.2<BR>>
fileg_vel2hold=0.1<BR>> Hold time will be calculated as<BR>> hold time =
fileg_hold<BR>> + fileg_vel2hold * velocity / 127<BR>> floating
point<BR>> 0 seconds<BR>> -100 to 100 seconds<BR>>
fileg_vel2decay<BR>> Velocity effect on filter EG decay time, in
seconds.<BR>> Examples:<BR>> fileg_vel2decay=1.2<BR>>
fileg_vel2decay=0.1<BR>> Decay time will be calculated as<BR>> decay
time = fileg_decay<BR>> + fileg_vel2decay * velocity / 127<BR>> floating
point<BR>> 0 seconds<BR>> -100 to 100 seconds<BR>>
fileg_vel2sustain<BR>> Velocity effect on filter EG sustain level, in
percentage.<BR>> Examples:<BR>> fileg_vel2sustain=30<BR>>
fileg_vel2sustain=-30<BR>> Sustain level will be calculated as<BR>>
sustain level = fileg_sustain + fileg_vel2sustain<BR>> Result will be
clipped to 0~100%.<BR>> floating point<BR>> 0 %<BR>> -100 % to 100
%<BR>> fileg_vel2release<BR>> Velocity effect on filter EG release time,
in seconds.<BR>> Examples:<BR>> fileg_vel2release=1.2<BR>>
fileg_vel2release=0.1<BR>> Release time will be calculated as<BR>>
release time = fileg_release<BR>> + fileg_vel2release * velocity /
127<BR>> floating point<BR>> 0 seconds<BR>> -100 to 100
seconds<BR>> fileg_vel2depth<BR>> Velocity effect on filter EG depth, in
cents.<BR>> Examples:<BR>> fileg_vel2depth=100<BR>>
fileg_vel2depth=-1200<BR>> integer<BR>> 0 cents<BR>> -12000 to 12000
cents<BR>> Filter LFO<BR>> fillfo_delay<BR>> The time before the
filter LFO starts oscillating, in seconds.<BR>> Examples:<BR>>
fillfo_delay=1<BR>> fillfo_delay=0.4<BR>> floating point<BR>> 0
seconds<BR>> 0 to 100 seconds<BR>> fillfo_fade<BR>> Filter LFO
fade-in effect time.<BR>> Examples:<BR>> fillfo_fade=1<BR>>
fillfo_fade=0.4<BR>> floating point<BR>> 0 seconds<BR>> 0 to 100
seconds<BR>> fillfo_freq<BR>> Filter LFO frequency, in hertz.<BR>>
Examples:<BR>> fillfo_freq=0.4<BR>> fillfo_freq=1.3<BR>> floating
point<BR>> 0 Hertz<BR>> 0 to 20 hertz<BR>> fillfo_depth<BR>>
Filter LFO depth, in cents.<BR>> Examples:<BR>> fillfo_depth=1<BR>>
fillfo_depth=4<BR>> floating point<BR>> 0 dB<BR>> -1200 to 1200
cents<BR>> fillfo_depthccN<BR>> Filter LFO depth when MIDI continuous
controller N is received, in cents.<BR>> Examples:<BR>>
fillfo_depthcc1=100<BR>> fillfo_depthcc32=400<BR>> integer<BR>> 0
cent<BR>> -1200 to 1200 cents<BR>> fillfo_depthchanaft<BR>> Filter
LFO depth when channel aftertouch MIDI messages are received, in
cents.<BR>> Examples:<BR>> fillfo_depthchanaft=100<BR>>
fillfo_depthchanaft=400<BR>> integer<BR>> 0 cent<BR>> -1200 to 1200
cents<BR>> fillfo_depthpolyaft<BR>> Filter LFO depth when polyphonic
aftertouch MIDI messages are received, in cents.<BR>> Examples:<BR>>
fillfo_depthpolyaft=100<BR>> fillfo_depthpolyaft=400<BR>>
integer<BR>> 0 cent<BR>> -1200 to 1200 cents<BR>>
fillfo_freqccN<BR>> Filter LFO frequency change when MIDI continuous
controller N is received, in hertz.<BR>> Examples:<BR>>
fillfo_freqcc1=5<BR>> fillfo_freqcc1=-12<BR>> floating point<BR>> 0
hertz<BR>> -200 to 200 hertz<BR>> fillfo_freqchanaft<BR>> Filter LFO
frequency change when channel aftertouch MIDI messages are received,
in<BR>> hertz.<BR>> Examples:<BR>> fillfo_freqchanaft=10<BR>>
fillfo_freqchanaft=-40<BR>> floating point<BR>> 0 hertz<BR>> -200 to
200 hertz<BR>> fillfo_freqpolyaft<BR>> Filter LFO frequency change when
polyphonic aftertouch MIDI messages are received,<BR>> in hertz.<BR>>
Examples:<BR>> fillfo_freqpolyaft=10<BR>> fillfo_freqpolyaft=-4<BR>>
floating point<BR>> 0 hertz<BR>> -200 to 200 hertz<BR>>
Amplifier<BR>> volume<BR>> The volume for the region, in
decibels.<BR>> Examples:<BR>> volume=-24<BR>> volume=0<BR>>
volume=3.5<BR>> floating point<BR>> 0.0<BR>> -144 to 6 dB<BR>>
pan<BR>> The panoramic position for the region.<BR>> If a mono sample is
used, pan<BR>> value defines the position in the stereo image where
the sample will be placed.<BR>> When a stereo sample is used, the pan value
the relative amplitude of one channel<BR>> respect the other.<BR>> A
value of zero means centered, negative values move the panoramic to the left,
positive<BR>> to the right.<BR>> Examples:<BR>> pan=-30.5<BR>>
pan=0<BR>> pan=43<BR>> floating point<BR>> 0.0<BR>> -100 to
100<BR>> width<BR>> Only operational for stereo samples,
width<BR>> defines the amount of channel mixing applied to play the
sample.<BR>> A width<BR>> value of 0 makes a stereo sample play as
if it were mono (adding both channels and<BR>> compensating for the
resulting volume change). A value of 100 will make the stereo<BR>> sample
play as original.<BR>> Any value in between will mix left and right
channels with a part of the other, resulting<BR>> in a narrower stereo
field image.<BR>> Negative width<BR>> values will reverse left and right
channels.<BR>> Examples:<BR>> width=100 // stereo<BR>> width=0 //
play this stereo sample as mono<BR>> width=50 // mix 50% of one channel
with the other<BR>> floating point<BR>> 0.0<BR>> -100 to 100
%<BR>> position<BR>> Only operational for stereo samples,
position<BR>> defines the position in the stereo field of a stereo
signal, after channel mixing<BR>> as defined in the<BR>> width
opcode.<BR>> A value of zero means centered, negative values move the
panoramic to the left, positive<BR>> to the right.<BR>>
Examples:<BR>> // mix both channels and play the result at left<BR>>
width=0 position=-100<BR>> // make the stereo image narrower and play
it<BR>> // slightly right<BR>> width=50 position=30<BR>> floating
point<BR>> 0.0<BR>> -100 to 100 %<BR>> amp_keytrack<BR>> Amplifier
keyboard tracking (change in amplitude per key) in dB.<BR>>
Examples:<BR>> amp_keytrack=-1.4<BR>> amp_keytrack=3<BR>> floating
point<BR>> 0 dB<BR>> -96 to 12 dB<BR>> amp_keycenter<BR>> Center
key for amplifier keyboard tracking. In this key, the amplifier keyboard
tracking<BR>> will have no effect.<BR>> Examples:<BR>>
amp_keycenter=60<BR>> amp_keycenter=48<BR>> integer<BR>> 60<BR>> 0
to 127<BR>> amp_veltrack<BR>> Amplifier velocity tracking, represents
how much the amplitude changes with incoming<BR>> note velocity.<BR>>
Volume changes with incoming velocity in a concave shape according to the
following<BR>> expression:<BR>> Amplitude(dB) = 20 log (127^2 /
Velocity^2)<BR>> The amp_velcurve_N<BR>> opcodes allow overriding
the default velocity curve.<BR>> Examples:<BR>> amp_veltrack=0<BR>>
amp_veltrack=100<BR>> floating point<BR>> 100 %<BR>> -100 to 100
%<BR>> amp_velcurve_1<BR>> amp_velcurve_127<BR>> User-defined
amplifier velocity curve. This opcode range allows defining a specific<BR>>
curve for the amplifier velocity. The value of the opcode indicates the
normalized<BR>> amplitude (0 to 1) for the specified velocity.<BR>> The
player will interpolate lineraly between specified opcodes for unspecified
ones:<BR>> amp_velcurve_1=0.2 amp_velcurve_3=0.3<BR>> // amp_velcurve_2
is calculated to 0.25<BR>> If amp_velcurve_127<BR>> is not
specified, the player will assign it the value of 1.<BR>> Examples:<BR>>
// linear, compressed dynamic range<BR>> // amplitude changes from 0.5 to
1<BR>> amp_velcurve_1=0.5<BR>> floating point<BR>> standard curve
(see<BR>> amp_veltrack)<BR>> 0 to 1<BR>> amp_random<BR>> Random
volume for the region, in decibels.<BR>> Examples:<BR>>
amp_random=10<BR>> amp_random=3<BR>> floating point<BR>> 0<BR>> 0
to 24 dB<BR>> rt_decay<BR>> The volume decay amount when the region is
set to play in<BR>> release<BR>> trigger mode, in decibels per
second since note-on message.<BR>> Examples:<BR>> rt_decay=6.5<BR>>
floating point<BR>> 0 dB<BR>> 0 to 200 dB<BR>> output<BR>> The
stereo output number for this region.<BR>> If the player doesn't feature
multiple outputs, this opcode is ignored.<BR>> Examples:<BR>>
output=0<BR>> output=4<BR>> integer<BR>> 0<BR>> 0 to 1024<BR>>
gain_ccN<BR>> Gain applied on MIDI control N, in decibels.<BR>>
Examples:<BR>> gain_cc1=12<BR>> floating point<BR>> 0<BR>> -144 to
48 dB<BR>> xfin_lokey<BR>> xfin_hikey<BR>> Fade in control.<BR>>
xfin_lokey and xfin_hikey<BR>> define the fade-in keyboard zone for
the region.<BR>> The volume of the region will be zero for keys lower than
or equal to<BR>> xfin_lokey<BR>> , and maximum (as defined by
the<BR>> volume<BR>> opcode) for keys greater than or equal
to<BR>> xfin_hikey.<BR>> Examples:<BR>> xfin_lokey=c3
xfin_hikey=c4<BR>> integer<BR>> xfin_lokey=0<BR>>
xfin_hikey=0<BR>> 0 to 127<BR>> C-1 to G9<BR>> xfout_lokey<BR>>
xfout_hikey<BR>> Fade out control.<BR>> xfout_lokey and
xfout_hikey<BR>> define the fade-out keyboard zone for the
region.<BR>> The volume of the region will be maximum (as defined by
the<BR>> volume<BR>> opcode) for keys lower than or equal
to<BR>> xfout_lokey<BR>> , and zero for keys greater than or equal
to<BR>> xfout_hikey.<BR>> Examples:<BR>> xfout_lokey=c5
xfout_hikey=c6<BR>> integer<BR>> xfout_lokey=127<BR>>
xfout_hikey=127<BR>> 0 to 127<BR>> C-1 to G9<BR>> xf_keycurve<BR>>
Keyboard crossfade curve for the region. Values can be:<BR>> gain:<BR>>
Linear gain crossfade. This setting is best when crossfading phase-aligned
material.<BR>> Linear gain crossfades keep constant amplitude during the
crossfade, preventing clipping.<BR>> power:<BR>> Equal-power RMS
crossfade. This setting works better to mix very different material,<BR>>
as a constant power level is kept during the crossfade.<BR>> text<BR>>
power<BR>> gain, power<BR>> xfin_lovel<BR>> xfin_hivel<BR>> Fade
in control.<BR>> xfin_lovel and xfin_hivel<BR>> define the fade-in
velocity range for the region.<BR>> The volume of the region will be zero
for velocities lower than or equal to<BR>> xfin_lovel<BR>> , and maximum
(as defined by the<BR>> volume<BR>> opcode) for velocities greater
than or equal to<BR>> xfin_hivel.<BR>> Examples:<BR>> xfin_lovel=0
xfin_hivel=127<BR>> integer<BR>> xfin_lovel=0<BR>>
xfin_hivel=0<BR>> 0 to 127<BR>> xfout_lovel<BR>> xfout_hivel<BR>>
Fade out control.<BR>> xfout_lokey and xfout_hikey<BR>> define the
fade-out velocity range for the region.<BR>> The volume of the region will
be maximum (as defined by the<BR>> volume<BR>> opcode) for
velocities lower than or equal to<BR>> xfout_lovel<BR>> , and zero for
velocities greater than or equal to<BR>> xfout_hivel.<BR>>
Examples:<BR>> xfout_lovel=0 xfout_hivel=127<BR>> integer<BR>>
xfout_lokey=127<BR>> xfout_hikey=127<BR>> 0 to 127<BR>>
xf_velcurve<BR>> Velocity crossfade curve for the region. Values can
be:<BR>> gain:<BR>> Linear gain crossfade. This setting is best when
crossfading phase-aligned material.<BR>> Linear gain crossfades keep
constant amplitude during the crossfade, preventing clipping.<BR>>
power:<BR>> Equal-power RMS crossfade. This setting works better to
mix very different material,<BR>> as a constant power level is kept during
the crossfade.<BR>> text<BR>> power<BR>> gain, power<BR>>
xfin_loccN<BR>> xfin_hiccN<BR>> Fade in control.<BR>> xfin_loccN and
xfin_hiccN<BR>> set the range of values in the MIDI continuous
controller N which will perform a<BR>> fade-in in the region.<BR>> The
volume of the region will be zero for values of the MIDI continuous
controller<BR>> N lower than or equal to<BR>> xfin_loccN, and maximum
(as defined by the<BR>> volume opcode) for values greater than or equal
to<BR>> xfin_hiccN.<BR>> Examples:<BR>> xfin_locc1=64
xfin_hicc1=127<BR>> integer<BR>> 0<BR>> 0 to 127<BR>>
xfout_loccN<BR>> xfout_hiccN<BR>> Fade out control.<BR>> xfout_loccN
and xfout_hiccN<BR>> set the range of values in the MIDI continuous
controller N which will perform a<BR>> fade-out in the region.<BR>> The
volume of the region will be maximum (as defined by the<BR>>
volume<BR>> opcode) for values of the MIDI continuous controller N
lower than or equal to<BR>> xfout_loccN<BR>> , and zero for values
greater than or equal to<BR>> xfout_hiccN.<BR>> Examples:<BR>>
xfout_locc1=64 xfout_hicc1=127<BR>> integer<BR>> 0<BR>> 0 to
127<BR>> xf_cccurve<BR>> MIDI controllers crossfade curve for the
region. Values can be:<BR>> gain:<BR>> Linear gain crossfade. This
setting is best when crossfading phase-aligned material.<BR>> Linear gain
crossfades keep constant amplitude during the crossfade, preventing
clipping.<BR>> power:<BR>> Equal-power RMS crossfade. This setting
works better to mix very different material,<BR>> as a constant power level
is kept during the crossfade.<BR>> text<BR>> power<BR>> gain,
power<BR>> Amplifier EG<BR>> ampeg_delay<BR>> Amplifier EG delay
time, in seconds. This is the time elapsed from note on to the<BR>> start
of the Attack stage.<BR>> Examples:<BR>> ampeg_delay=1.5<BR>>
ampeg_delay=0<BR>> floating point<BR>> 0 seconds<BR>> 0 to 100
seconds<BR>> ampeg_start<BR>> Amplifier EG start level, in
percentage.<BR>> Examples:<BR>> ampeg_start=20<BR>>
ampeg_start=100<BR>> floating point<BR>> 0 %<BR>> 0 to 100 %<BR>>
ampeg_attack<BR>> Amplifier EG attack time, in seconds.<BR>>
Examples:<BR>> ampeg_attack=1.2<BR>> ampeg_attack=0.1<BR>> floating
point<BR>> 0 seconds<BR>> 0 to 100 seconds<BR>> ampeg_hold<BR>>
Amplifier EG hold time, in seconds. During the hold stage, EG output will
remain<BR>> at its maximum value.<BR>> Examples:<BR>>
ampeg_hold=1.5<BR>> ampeg_hold=0.1<BR>> floating point<BR>> 0
seconds<BR>> 0 to 100 seconds<BR>> ampeg_decay<BR>> Amplifier EG
decay time, in seconds.<BR>> Examples:<BR>> ampeg_decay=1.5<BR>>
ampeg_decay=3<BR>> floating point<BR>> 0 seconds<BR>> 0 to 100
seconds<BR>> ampeg_sustain<BR>> Amplifier EG sustain level, in
percentage.<BR>> Examples:<BR>> ampeg_sustain=40.34<BR>>
ampeg_sustain=10<BR>> floating point<BR>> 100 %<BR>> 0 to 100
%<BR>> ampeg_release<BR>> Amplifier EG release time (after note
release), in seconds.<BR>> Examples:<BR>> ampeg_release=1.34<BR>>
ampeg_release=2<BR>> floating point<BR>> 0 seconds<BR>> 0 to 100
seconds<BR>> ampeg_vel2delay<BR>> Velocity effect on amplifier EG delay
time, in seconds.<BR>> Examples:<BR>> ampeg_vel2delay=1.2<BR>>
ampeg_vel2delay=0.1<BR>> Delay time will be calculated as<BR>> delay
time = ampeg_delay<BR>> + ampeg_vel2delay * velocity / 127<BR>> floating
point<BR>> 0 seconds<BR>> -100 to 100 seconds<BR>>
ampeg_vel2attack<BR>> Velocity effect on amplifier EG attack time, in
seconds.<BR>> Examples:<BR>> ampeg_vel2attack=1.2<BR>>
ampeg_vel2attack=0.1<BR>> Attack time will be calculated as<BR>> attack
time = ampeg_attack<BR>> + ampeg_vel2attack * velocity / 127<BR>>
floating point<BR>> 0 seconds<BR>> -100 to 100 seconds<BR>>
ampeg_vel2hold<BR>> Velocity effect on amplifier EG hold time, in
seconds.<BR>> Examples:<BR>> ampeg_vel2hold=1.2<BR>>
ampeg_vel2hold=0.1<BR>> Hold time will be calculated as<BR>> hold time =
ampeg_hold<BR>> + ampeg_vel2hold * velocity / 127<BR>> floating
point<BR>> 0 seconds<BR>> -100 to 100 seconds<BR>>
ampeg_vel2decay<BR>> Velocity effect on amplifier EG decay time, in
seconds.<BR>> Examples:<BR>> ampeg_vel2decay=1.2<BR>>
ampeg_vel2decay=0.1<BR>> Decay time will be calculated as<BR>> decay
time = ampeg_decay<BR>> + ampeg_vel2decay * velocity / 127<BR>> floating
point<BR>> 0 seconds<BR>> -100 to 100 seconds<BR>>
ampeg_vel2sustain<BR>> Velocity effect on amplifier EG sustain level, in
percentage.<BR>> Examples:<BR>> ampeg_vel2sustain=30<BR>>
ampeg_vel2sustain=-30<BR>> Sustain level will be calculated as<BR>>
sustain level= ampeg_sustain<BR>> + ampeg_vel2sustain<BR>> The result
will be clipped to 0~100%.<BR>> floating point<BR>> 0%<BR>> -100 % to
100 %<BR>> ampeg_vel2release<BR>> Velocity effect on amplifier EG
release time, in seconds.<BR>> Examples:<BR>>
ampeg_vel2release=1.2<BR>> ampeg_vel2release=0.1<BR>> Release time will
be calculated as<BR>> release time = ampeg_release<BR>> +
ampeg_vel2release * velocity / 127<BR>> floating point<BR>> 0
seconds<BR>> -100 to 100 seconds<BR>> ampeg_delayccN<BR>> Amplifier
EG delay time added on MIDI control N, in seconds.<BR>> Examples:<BR>>
ampeg_delaycc20=1.5<BR>> ampeg_delaycc1=0<BR>> floating point<BR>> 0
seconds<BR>> -100 to 100 seconds<BR>> ampeg_startccN<BR>> Amplifier
EG start level added on MIDI control N, in percentage.<BR>>
Examples:<BR>> ampeg_startcc20=20<BR>> ampeg_startcc1=100<BR>>
floating point<BR>> 0 %<BR>> -100 to 100 %<BR>>
ampeg_attackccN<BR>> Amplifier EG attack time added on MIDI control N, in
seconds.<BR>> Examples:<BR>> ampeg_attackcc20=1.2<BR>>
ampeg_attackcc1=0.1<BR>> floating point<BR>> 0 seconds<BR>> -100 to
100 seconds<BR>> ampeg_holdccN<BR>> Amplifier EG hold time added on MIDI
control N, in seconds.<BR>> Examples:<BR>> ampeg_holdcc20=1.5<BR>>
ampeg_holdcc1=0.1<BR>> floating point<BR>> 0 seconds<BR>> -100 to 100
seconds<BR>> ampeg_decayccN<BR>> Amplifier EG decay time added on MIDI
control N, in seconds.<BR>> Examples:<BR>> ampeg_decaycc20=1.5<BR>>
ampeg_decaycc1=3<BR>> floating point<BR>> 0 seconds<BR>> -100 to 100
seconds<BR>> ampeg_sustainccN<BR>> Amplifier EG sustain level added on
MIDI control N, in percentage.<BR>> Examples:<BR>>
ampeg_sustaincc20=40.34<BR>> ampeg_sustaincc1=10<BR>> floating
point<BR>> 100 %<BR>> -100 to 100 %<BR>> ampeg_releaseccN<BR>>
Amplifier EG release time added on MIDI control N, in seconds.<BR>>
Examples:<BR>> ampeg_releasecc20=1.34<BR>> ampeg_releasecc1=2<BR>>
floating point<BR>> 0 seconds<BR>> -100 to 100 seconds<BR>> Amplifier
LFO<BR>> amplfo_delay<BR>> The time before the Amplifier LFO starts
oscillating, in seconds.<BR>> Examples:<BR>> amplfo_delay=1<BR>>
amplfo_delay=0.4<BR>> floating point<BR>> 0 seconds<BR>> 0 to 100
seconds<BR>> amplfo_fade<BR>> Amplifier LFO fade-in effect time.<BR>>
Examples:<BR>> amplfo_fade=1<BR>> amplfo_fade=0.4<BR>> floating
point<BR>> 0 seconds<BR>> 0 to 100 seconds<BR>> amplfo_freq<BR>>
Amplifier LFO frequency, in hertz.<BR>> Examples:<BR>>
amplfo_freq=0.4<BR>> amplfo_freq=1.3<BR>> floating point<BR>> 0
Hertz<BR>> 0 to 20 hertz<BR>> amplfo_depth<BR>> Amplifier LFO depth,
in decibels.<BR>> Examples:<BR>> amplfo_depth=1<BR>>
amplfo_depth=4<BR>> floating point<BR>> 0 dB<BR>> -10 to 10
dB<BR>> amplfo_depthccN<BR>> Amplifier LFO depth when MIDI continuous
controller N is received, in decibels.<BR>> Examples:<BR>>
amplfo_depthcc1=100<BR>> amplfo_depthcc32=400<BR>> floating
point<BR>> 0 dB<BR>> -10 to 10 dB<BR>> amplfo_depthchanaft<BR>>
Amplifier LFO depth when channel aftertouch MIDI messages are received, in
cents.<BR>> Examples:<BR>> amplfo_depthchanaft=100<BR>>
amplfo_depthchanaft=400<BR>> floating point<BR>> 0 dB<BR>> -10 to 10
dB<BR>> amplfo_depthpolyaft<BR>> Amplifier LFO depth when polyphonic
aftertouch MIDI messages are received, in cents.<BR>> Examples:<BR>>
amplfo_depthpolyaft=100<BR>> amplfo_depthpolyaft=400<BR>> floating
point<BR>> 0 dB<BR>> -10 to 10 dB<BR>> amplfo_freqccN<BR>>
Amplifier LFO frequency change when MIDI continuous controller N is received,
in<BR>> hertz.<BR>> Examples:<BR>> amplfo_freqcc1=5<BR>>
amplfo_freqcc1=-12<BR>> floating point<BR>> 0 hertz<BR>> -200 to 200
hertz<BR>> amplfo_freqchanaft<BR>> Amplifier LFO frequency change when
channel aftertouch MIDI messages are received,<BR>> in hertz.<BR>>
Examples:<BR>> amplfo_freqchanaft=10<BR>> amplfo_freqchanaft=-40<BR>>
floating point<BR>> 0 hertz<BR>> -200 to 200 hertz<BR>>
amplfo_freqpolyaft<BR>> Amplifier LFO frequency change when polyphonic
aftertouch MIDI messages are received,<BR>> in hertz.<BR>>
Examples:<BR>> amplfo_freqpolyaft=10<BR>> amplfo_freqpolyaft=-4<BR>>
floating point<BR>> 0 hertz<BR>> -200 to 200 hertz<BR>>
Equalizer<BR>> eq1_freq<BR>> eq2_freq<BR>> eq3_freq<BR>> Frequency
of the equalizer band, in Hertz.<BR>> Examples:<BR>> eq1_freq=80
eq2_freq=1000 eq3_freq=4500<BR>> floating point<BR>> eq1_freq=50<BR>>
eq2_freq=500<BR>> eq3_freq=5000<BR>> 0 to 30000 Hz<BR>>
eq1_freqccN<BR>> eq2_freqccN<BR>> eq3_freqccN<BR>> Frequency change
of the equalizer band when MIDI continuous control N messages are<BR>>
received, in Hertz.<BR>> Examples:<BR>> eq1_freqcc1=80<BR>> floating
point<BR>> 0<BR>> -30000 to 30000 Hz<BR>> eq1_vel2freq<BR>>
eq2_vel2freq<BR>> eq3_vel2freq<BR>> Frequency change of the equalizer
band with MIDI velocity, in Hertz.<BR>> Examples:<BR>>
eq1_vel2freq=1000<BR>> floating point<BR>> 0<BR>> -30000 to 30000
Hz<BR>> eq1_bw<BR>> eq2_bw<BR>> eq3_bw<BR>> Bandwidth of the
equalizer band, in octaves.<BR>> Examples:<BR>> eq1_bw=1 eq2_bw=0.4
eq3_bw=1.4<BR>> floating point<BR>> 1 octave<BR>> 0.001 to 4
octaves<BR>> eq1_bwccN<BR>> eq2_bwccN<BR>> eq3_bwccN<BR>>
Bandwidth change of the equalizer band when MIDI continuous control N messages
are<BR>> received, in octaves.<BR>> Examples:<BR>>
eq1_bwcc29=1.3<BR>> floating point<BR>> 0<BR>> -4 to 4
octaves<BR>> eq1_gain<BR>> eq2_gain<BR>> eq3_gain<BR>> Gain of the
equalizer band, in decibels.<BR>> Examples:<BR>> eq1_gain=-3 eq2_gain=6
eq3_gain=-6<BR>> floating point<BR>> 0 dB<BR>> -96 to 24 dB<BR>>
eq1_gainccN<BR>> eq2_gainccN<BR>> eq3_gainccN<BR>> Gain change of the
equalizer band when MIDI continuous control N messages are received,<BR>>
in decibels.<BR>> Examples:<BR>> eq1_gaincc23=-12<BR>> floating
point<BR>> 0 dB<BR>> -96 to 24 dB<BR>> eq1_vel2gain<BR>>
eq2_vel2gain<BR>> eq3_vel2gain<BR>> Gain change of the equalizer band
with MIDI velocity, in decibels.<BR>> Examples:<BR>>
eq1_vel2gain=12<BR>> floating point<BR>> 0<BR>> -96 to 24 dB<BR>>
Effects<BR>> effect1<BR>> Level of effect1 send, in percentage (reverb
in sfz).<BR>> Examples:<BR>> effect1=100<BR>> floating point<BR>>
0<BR>> 0 to 100 %<BR>> effect2<BR>> Level of effect2 send, in
percentage (chorus in sfz).<BR>> Examples:<BR>> effect2=100<BR>>
floating point<BR>> 0<BR>> 0 to 100 %<BR>> Examples<BR>> Example
.sfz definition files showing every opcode functionality can be found
at:<BR>> <A
href="http://www.rgcaudio.com/sfzsamples/">http://www.rgcaudio.com/sfzsamples/</A><BR>>
Copyright © 2004 rgc:audio Software. All rights reserved.<BR>> All
specifications and prices specified on this web site may be subject to
change<BR>> without notice.<BR>> <BR>> ----- Original Message
-----<BR>> From: Goldfinga Productions<BR>> To: Reapers Without
Peepers<BR>> Sent: Saturday, August 10, 2013 6:02 PM<BR>> Subject: Re:
[RWP] poise<BR>> <BR>> Ok, and loading sounds is done how? Let me play
with it and see if it works for me.<BR>> <BR>> <BR>> On Aug 10, 2013,
at 6:50 PM, "Chris Belle" <<A
href="mailto:cb1963@sbcglobal.net">cb1963@sbcglobal.net</A>> wrote:<BR>>
<BR>> > Vst.<BR>> > <BR>> > ----- Original Message
-----<BR>> > From: Goldfinga Productions<BR>> > To: Reapers
Without Peepers<BR>> > Sent: Saturday, August 10, 2013 5:33 PM<BR>>
> Subject: Re: [RWP] poise<BR>> > <BR>> > I believe I have it,
I don't know how you would go about using it and reaper though. I guess you
have to use the standalone version, and rewire it through reaper?<BR>> >
What's the best way to harness SFV and reaper together?<BR>> > <BR>>
> On Aug 10, 2013, at 5:52 PM, "Chris Belle" <<A
href="mailto:cb1963@sbcglobal.net">cb1963@sbcglobal.net</A>> wrote:<BR>>
> <BR>> > > Hey you guys don't forget about sfz while we're
waiting for shannon to help, it's already very accessible, learn a few opcodes
and you can play samples just the way you like.<BR>> > >
<BR>> > > There are only about 8 controls on the interface that need
to be spotted and I think someone else has already done done an ahk for it, I
did one for sonar,<BR>> > > but jsonar and ct already support
it.<BR>> > > <BR>> > > I like sfz for instance if I
want to assign several keys so I can do a snare roll convincingly, I
can,<BR>> > > or layer multiple samples on one key, or have a
high-hat pinch off with an off_by group value I can, it's really the
bomb.<BR>> > > <BR>> > > I've been constructing
instruments with it for years.<BR>> > > And it's free.<BR>> >
> <BR>> > > <BR>> > > <BR>> >
> <BR>> > > ----- Original Message -----<BR>> > >
From: Goldfinga Productions<BR>> > > To: Reapers Without
Peepers<BR>> > > Sent: Saturday, August 10, 2013 10:45 AM<BR>>
> > Subject: Re: [RWP] poise<BR>> > > <BR>> > > And to
add to what Kevin said,poise Will allow you to group paths together so not
only can you have eight litters per pad, but you can trigger multiple pads at
once. you can also do that with sonar and the matrix. But it's a really cool
feature to have.<BR>> > > They're both really cool sample players.
But I would prefer to use poise<BR>> > > <BR>> > > I hope
Shannon is able to do something with it. I think it's going to unlock a lot of
potential, at least in my studio.<BR>> > > <BR>> > >
<BR>> > > On Aug 10, 2013, at 2:54 AM, Kevin Reeves <<A
href="mailto:lists@kevinreeves.net">lists@kevinreeves.net</A>>
wrote:<BR>> > > <BR>> > > > For the record, poise and
matrix view are complete apples and oranges.<BR>> > > > <BR>>
> > > Poise lets you put 8 layers of drums on each pad, allow for
round robbin sample playback, pan, env, volume, etc.<BR>> > > >
<BR>> > > > Matrix view just lets you trigger samples and other
items in Sonar.<BR>> > > > <BR>> > > > While this is
powerful in and of itself, poise gives you that MPC like environment you need
for creating beats.<BR>> > > > <BR>> > > > Hope this
helps.<BR>> > > > <BR>> > > > Kevin<BR>> > >
> <BR>> > > >
_______________________________________________<BR>> > > > RWP
mailing list<BR>> > > > <A
href="mailto:RWP@reaaccess.com">RWP@reaaccess.com</A><BR>> > > >
<A
href="http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com">http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com</A><BR>>
> > <BR>> > > <BR>> > > GF<BR>> > > <BR>>
> > Check me out on twitter<BR>> > > <A
href="http://www.twitter.com/goldfingas">http://www.twitter.com/goldfingas</A><BR>>
> > <BR>> > > <BR>> > > <BR>> > >
_______________________________________________<BR>> > > RWP mailing
list<BR>> > > <A
href="mailto:RWP@reaaccess.com">RWP@reaaccess.com</A><BR>> > > <A
href="http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com">http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com</A><BR>>
> > _______________________________________________<BR>> > >
RWP mailing list<BR>> > > <A
href="mailto:RWP@reaaccess.com">RWP@reaaccess.com</A><BR>> > > <A
href="http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com">http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com</A><BR>>
> <BR>> > <BR>> > GF<BR>> > <BR>> > Check me out on
twitter<BR>> > <A
href="http://www.twitter.com/goldfingas">http://www.twitter.com/goldfingas</A><BR>>
> <BR>> > <BR>> > <BR>> >
_______________________________________________<BR>> > RWP mailing
list<BR>> > <A
href="mailto:RWP@reaaccess.com">RWP@reaaccess.com</A><BR>> > <A
href="http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com">http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com</A><BR>>
> _______________________________________________<BR>> > RWP mailing
list<BR>> > <A
href="mailto:RWP@reaaccess.com">RWP@reaaccess.com</A><BR>> > <A
href="http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com">http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com</A><BR>>
<BR>> <BR>> GF<BR>> <BR>> Check me out on twitter<BR>> <A
href="http://www.twitter.com/goldfingas">http://www.twitter.com/goldfingas</A><BR>>
<BR>> <BR>> <BR>>
_______________________________________________<BR>> RWP mailing
list<BR>> <A href="mailto:RWP@reaaccess.com">RWP@reaaccess.com</A><BR>>
<A
href="http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com">http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com</A><BR>>
_______________________________________________<BR>> RWP mailing
list<BR>> <A href="mailto:RWP@reaaccess.com">RWP@reaaccess.com</A><BR>>
<A
href="http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com">http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com</A><BR><BR><BR>GF<BR><BR>Check
me out on twitter<BR><A
href="http://www.twitter.com/goldfingas">http://www.twitter.com/goldfingas</A><BR><BR><BR><BR>_______________________________________________<BR>RWP
mailing list<BR><A href="mailto:RWP@reaaccess.com">RWP@reaaccess.com</A><BR><A
href="http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com">http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com</A></BLOCKQUOTE></BODY></HTML>