<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META content="text/html; charset=iso-8859-1" http-equiv=Content-Type>
<META name=GENERATOR content="MSHTML 8.00.6001.23507">
<STYLE></STYLE>
</HEAD>
<BODY bgColor=#ffffff>
<DIV><FONT size=2 face=Arial>There is a menu to load samples or sfz files which
control sample playback.</FONT></DIV>
<DIV><FONT size=2 face=Arial></FONT> </DIV>
<DIV><FONT size=2 face=Arial>What makes sfz so groovy is sfz files are just text
files which refer to samples there for a completely accesssible sample playback
system for blind folks.</FONT></DIV>
<DIV><FONT size=2 face=Arial></FONT> </DIV>
<DIV><FONT size=2 face=Arial>YOu can load sound fonts too, but there are
advantages to sfz file formats, you give up things like banks and multiple
</FONT></DIV>
<DIV><FONT size=2 face=Arial>sound sets but the sfz format is way more flexible
and configurable than the old sound font system.</FONT></DIV>
<DIV><FONT size=2 face=Arial></FONT> </DIV>
<DIV><FONT size=2 face=Arial>But I have tons of these so sfz serves both for old
and new.</FONT></DIV>
<DIV><FONT size=2 face=Arial></FONT> </DIV>
<DIV><FONT size=2 face=Arial>I will forward the basic manual I have which you
can dive in to and will show you how sfz works.</FONT></DIV>
<DIV><FONT size=2 face=Arial>Also many keyboards and synths can now use sfz it's
a totally open standard.</FONT></DIV>
<DIV><FONT size=2 face=Arial></FONT> </DIV>
<DIV><FONT size=2 face=Arial>YOu can just cook up your wave files, or samples
with loop info or other meta information in them and sfz will work with
it.</FONT></DIV>
<DIV><FONT size=2 face=Arial></FONT> </DIV>
<DIV><FONT size=2 face=Arial></FONT> </DIV>
<DIV><FONT size=2 face=Arial>Here goes.</FONT></DIV>
<DIV><FONT size=2 face=Arial></FONT> </DIV>
<DIV><FONT size=2 face=Arial>The sfz Format: Basics<BR>What's The sfz
Format?<BR>The sfz format is a file format to define how a collection of samples
are arranged<BR>for performance.<BR>The goal behind the sfz format is to provide
a free, simple, minimalistic and<BR>expandable format to arrange, distribute and
use audio samples with the highest possible<BR>quality and the highest possible
performance flexibility.<BR>A sfz format file can be played in our freeware sfz
player.<BR>Soundware, software and hardware developers can create, use and
distribute the sfz<BR>format<BR> files for free, for either free or
commercial applications.<BR>Some of the features of the sfz format are:<BR>-
Samples of any bit depth (8/16/24/32-bit) support, mono or stereo.<BR>- Samples
taken at any samplerate (i.e. 44.1k, 48k, 88.2k, 96k, 176.4k, 192k, 384k).<BR>-
Compressed samples. Compressed and uncompressed can be combined.<BR>- Looped
samples.<BR>- Unlimited keyboard splits and layers.<BR>- Unlimited velocity
splits and layers.<BR>- Unlimited regions of sample playback based on MIDI
controllers (continuous controllers,<BR>pitch bend, channel and polyphonic
aftertouch, keyboard switches) and internal generators<BR>(random, sequence
counters).<BR>- Sample playback on MIDI control events.<BR>- Unlimited
unidirectional and bidirectional exclusive regions (mute groups).<BR>- Unlimited
release trigger regions with release trigger attenuation control.<BR>- Unlimited
crossfade controls.<BR>- Trigger on first-note and legato notes.<BR>- Sample
playback synchronized to host tempo.<BR>- Dedicated Envelope Generators for
pitch, filter and amplifier.<BR>- Dedicated LFO for pitch, filter and
amplifier.<BR>How the sfz format is structured?<BR>The sfz format is a
collection of sample files<BR>plus one or multiple .sfz definition files. This
structure, containing multiple files<BR>instead of a single file is defined as
non-monolithic.<BR>Two kinds of sample files were selected to be included in the
sfz<BR> format: a basic PCM uncompressed format (standard Windows wave
files) and a basic,<BR>adjustable-quality, royalty free compressed format
(ogg-vorbis encoded files).<BR>The inclusion of a compressed format allows
sample developers and soundware creators<BR>to easily create preview or
demonstration files in a small package so they can be<BR>transferred with
minimum bandwidth, while retaining complete performance functionality.<BR>Both
formats are 100% royalty-free, so players can be created to reproduce them
without<BR>fixed or per-copy fees. They can also be freely distributed on the
web (provided<BR>that the contents of the files are copyright cleared).<BR>Each
.sfz definition file represents one or a collection of instruments. An
instrument<BR>is defined as a collection of regions<BR>. Regions include the
definition for the input controls, the samples (the wav/ogg<BR>files) and the
performance parameters to play those samples.<BR>How the .sfz definition file is
created?<BR>A .sfz definition file is just a text file. Consequently, it can be
created by using<BR>any text editor (i.e. Notepad).<BR>Why
non-monolithic?<BR>While both monolithic and non-monolithic formats have
advantages and disadvantages,<BR>there are several reasons which moved us to
adopt a non-monolithic sample format.<BR>Technological and conceptual reasons
can hardly be separated, so here's a basic explanation.<BR>The most important
reason is the file size limitation of a non-monolitic file on<BR>FAT32
partitions. Samples are getting really big nowadays, with thousands of
individual<BR>samples collected in single instruments, and triggered according
to many input control<BR>combinations.<BR>Samples with high bit resolution (i.e.
24-bit samples) and high samplerate settings<BR>(96kHz, 192kHz) make the
collection size even bigger. In the case of a non-monolithic<BR>format, the
limitation still applies, but it applies to each sample instead of to<BR>the sum
of all samples, making the limit virtually unreachable.<BR>While this limitation
doesn't apply to NTFS, NTFS partitions are less efficient than<BR>FAT32 disks in
terms of raw disk performance for streaming applications.<BR>Additionally,
editing a single sample in a monolithic file implies loading the whole<BR>file,
and after edit, saving the whole file again to disk. When collection size
is<BR>big, the loading and saving operation is very time-consuming.<BR>However,
we have not discharged the possibility of incorporating a monolithic
format<BR>for the sfz<BR>format, as soon as the format structure is completely
implemented. Small sound sets<BR>(or NTFS users) could chose between the two
options appropriately.<BR>Why not XML?<BR>XML was actually the first choice for
the .sfz definition file, mainly due the simplicity<BR>from the development
point of view as the XML parser and transaction code is
already<BR>available.<BR>However, XML was designed to exchange data over the
web. Musicians, players, composers,<BR>soundware developers and audio
technicians generally do not know about XML at all.<BR>In addition, as a
universal information exchange format designed for
general-purpose<BR>applications, XML is inefficient (in terms of information
over total data terms),<BR>and editing a XML file requires the use of a XML
editor instead of a text editor.<BR>A .sfz file is extremely self-explanatory.
Most of the functionality of an instrument<BR>can be easily discovered by
reading the file.<BR>Is there a .sfz dedicated editor?<BR>From rgc:audio, not
yet... and not anytime soon.<BR>However, we're working with several developers
in the industry, creators of sample-conversion<BR>software to implement the .sfz
format in their converters and editors.<BR>The nature of the format allows
creating instruments using other general-purpose<BR>software, like spreadsheets,
wordprocessors, simple-scripting languages and other<BR>custom tailored software
applications.<BR>Implementation<BR>How an instrument is defined?<BR>The basic
component of an instrument is a region<BR>. An instrument then, is defined by
one or more regions. Multiple regions can be<BR>arranged in a<BR>group. Groups
allow entering common parameters for multiple regions.<BR>A region can include
three main components: the definition for a sample, a set of<BR>input controls
and a set of<BR>performance parameters<BR>.<BR>Sample<BR>The sample opcode
defines which sample file will be played when the region is defined<BR>to
play.<BR>If a sample opcode is not present in the region, the region will play
the sample<BR>defined in the last <group><BR>. If there's no previous
group defined, or if the previous group doesn't specify<BR>a<BR>sample opcode,
the region will be ignored.<BR>Input Controls<BR>Input controls define
when<BR>the sample defined in a region will play, based in real-world controller
values and/or<BR>internally calculated values.<BR>Real-world controllers are the
elements that players, musicians or composers actually<BR>use to play music.
Internal values are calculated by the player, like sequence counters<BR>and
random generators.<BR>The sfz<BR> format relies in the standard Musical
Instruments Digital Interface (MIDI) specification<BR>for all input controls.
Most available performance controllers implement MIDI, and<BR>it's still the
dominating specification for software audio sequencers in all
platforms.<BR>Keyboard controllers are the most significant example of an Input
Controls generator.<BR>Other generators could be MIDI guitars and string
instruments, wind controllers,<BR>drum and percussion controllers. With
individual differences, they all generate a<BR>common set of messages defined in
the MIDI specification.<BR>A set of input controls then, are the combination of
a played MIDI note with its<BR>velocity, continuous controllers, pitch bend,
channel and polyphonic aftertouch,<BR>etc.<BR>When a particular set of input
controls matches the definition for a region, the<BR>sample specified in that
region plays, using a particular set of performance parameters<BR>also specified
in the region.<BR>Inside the definition file, a region starts with the
<region> header. A region is<BR>defined between two
<region><BR> headers, or between a<BR><region> header and a
<group> header, or between a <region> header and the end of<BR>the
file,.<BR>Following the <region><BR>header one or more opcodes can be
defined. The opcodes are special keywords which<BR>instruct the player on what,
when and how to play a sample.<BR>Opcodes within a region can appear in any
order, and they have to be separated by<BR>one or more spaces or tabulation
controls. Opcodes can appear in separated lines<BR>within a region.<BR>Opcodes
and assigned opcode values are separated by the equal to sign (=<BR>), without
spaces between the opcode and the sign. For
instance:<BR>sample=trombone_a4_ff.wav<BR>sample=cello_a5_pp first
take.wav<BR>are valid examples, while:<BR>sample = cello_a4_pp.wav<BR>Is not
(note the spaces at the sides of the = sign).<BR>Input Controls and Performance
Parameters opcodes are optional, so they might not<BR>be present in the
definition file. An 'expectable' default value for each parameter<BR>is
pre-defined, and will be used if there's no definition.<BR>Example region
definitions:<BR><region> sample=440.wav<BR>This region definition
instructs the player to play the sample file '440.wav' for<BR>the whole keyboard
range.<BR><region> lokey=64 hikey=67 sample=440.wav<BR>This region
features a very basic set of input parameters (lokey and hikey<BR>, which
represent the low and high MIDI notes in the keyboard), and the sample
definition.<BR>This instructs the player to play the sample '440.wav', if a key
in the 64-67 range<BR>is played.<BR>It is very important to note that all Input
Controls defined in a region act using<BR>the AND boolean operator.
Consequently, all conditions must be matched for the region<BR>to play. For
instance:<BR><region> lokey=64 hikey=67 lovel=0 hivel=34 locc1=0 hicc1=40
sample=440.wav<BR>This region definition instructs the player to play the sample
'440.wav' if there<BR>is an incoming note event in the 64-67 range AND the note
has a velocity in the 0~34<BR>range AND last modulation wheel (cc1) message was
in the 0~40 range.<BR>Performance parameters<BR>The Performance Parameters
define how the sample specified will play, once the region<BR>is defined to
play.<BR>A simple example of a Performance Parameter is volume. It defines how
loud the sample<BR>will be played when the region plays.<BR>Groups<BR>As
previously stated, groups allow entering common parameters for multiple
regions.<BR>A group is defined with the <group><BR>opcode, and the
parameters enumerated on it last till the next group opcode, or till<BR>the end
of the file.<BR><group><BR>ampeg_attack=0.04
ampeg_release=0.45<BR><region> sample=trumpet_pp_c4.wav
key=c4<BR><region> sample=trumpet_pp_c#4.wav key=c#4<BR><region>
sample=trumpet_pp_d4.wav key=d4<BR><region> sample=trumpet_pp_d#4.wav
key=d#4<BR><group><BR><region> sample=trumpet_pp_e4.wav key=e4 //
previous group parameters reset<BR>Comments<BR>Comment lines can be inserted
anywhere inside the file. A comment line starts with<BR>the slash character
('/'), and it extends till the end of the
line.<BR><region><BR>sample=trumpet_pp_c4.wav<BR>// middle C in the
keyboard<BR>lokey=60<BR>// pianissimo layer<BR>lovel=0 hivel=20 // another
comment<BR>Where the sample files have to be stored?<BR>Sample files can be
stored either in the same folder where the .sfz definition file<BR>resides, or
in any alternative route, specified relatively to the location of
the<BR>definition file.
Consequently:<BR>sample=trumpet_pp_c3.wav<BR>sample=samples\trumpet_pp_c3.wav<BR>sample=..\trumpet_pp_c3.wav<BR>Are
all valid sample names.<BR>Alternatively, the player might specify one or
several 'user folders', where it will<BR>search for samples if it doesn't find
them in the same folder as the definition file.<BR>What the sfz format can
do?<BR>The sfz format is aimed to allow the arrange of a sample collection in a
flexible<BR>and expandable way. It's up to the player to decide which
functionality it wants<BR>to implement.<BR>Units<BR>All units in the sfz format
are in real-world values. Frequencies are expressed in<BR>Hertz, pitches in
cents, amplitudes in percentage and volumes in decibels.<BR>Notes are expressed
in MIDI Note Numbers, or in note names according to the International<BR>Pitch
Notation (IPN) convention. According to this rules, middle C in the
keyboard<BR>is C4 and the MIDI note number 60.<BR>Opcode list<BR>The following
is a description of all valid opcodes for the sfz format version
1.0:<BR>Opcode<BR>Description<BR>Type<BR>Default<BR>Range<BR>Sample
Definition<BR>sample<BR>This opcode defines which sample file the region will
play.<BR>The value of this opcode is the filename of the sample file, including
the extension.<BR>The filename must be stored in the same folder where the
definition file is, or specified<BR>relatively to it.<BR>If the sample file is
not found, the player will ignore the whole region contents.<BR>Long names and
names with blank spaces and other special characters (excepting the<BR>=
character) are allowed in the sample definition.<BR>The sample will play
unchanged when a note equal to the<BR>pitch_keycenter opcode value is played.
If<BR>pitch_keycenter<BR> is not defined for the region, sample will play
unchanged on note 60 (middle
C).<BR>Examples:<BR>sample=guitar_c4_ff.wav<BR>sample=dog kick.ogg<BR>sample=out
of tune trombone
(redundant).wav<BR>sample=staccatto_snare.ogg<BR>string<BR>(filename)<BR>n/a<BR>n/a<BR>Input
Controls<BR>lochan<BR>hichan<BR>If incoming notes have a MIDI channel
between<BR>lochan and hichan, the region will play.<BR>Examples:<BR>lochan=1
hichan=5<BR>integer<BR>lochan=1<BR>hichan=16<BR>1 to
16<BR>lokey<BR>hikey<BR>key<BR>If a note equal to or higher than
lokey<BR> AND equal to or lower than<BR>hikey is played, the region will
play.<BR>lokey and hikey<BR> can be entered in either MIDI note numbers (0
to 127) or in MIDI note names (C-1<BR>to G9)<BR>The key opcode sets lokey, hikey
and<BR>pitch_keycenter to the same note.<BR>Examples:<BR>lokey=60 // middle
C<BR>hikey=63 // middle D#<BR>lokey=c4 // middle C<BR>hikey=d#4 // middle
D#<BR>hikey=eb4 // middle Eb (D#)<BR>integer<BR>lokey=0, hikey=127<BR>0 to
127<BR>C-1 to G9<BR>lovel<BR>hivel<BR>If a note with velocity value equal to or
higher than<BR>lovel AND equal to or lower than hivel<BR> is played, the
region will play.<BR>integer<BR>lovel=0,<BR>hivel=127<BR>0 to
127<BR>loccN<BR>hiccN<BR>Defines the range of the last MIDI controller N
required for the region to play.<BR>Examples:<BR>locc74=30 hicc74=100<BR>The
region will play only if last MIDI controller 74 received was in the 30~100
range.<BR>integer<BR>locc=0, hicc=127<BR>for all controllers<BR>0 to
127<BR>lobend<BR>hibend<BR>Defines the range of the last Pitch Bend message
required for the region to play.<BR>Examples:<BR>lobend=0 hibend=4000<BR>The
region will play only if last Pitch Bend message received was in the 0~4000
range.<BR>integer<BR>lobend=-8192, hibend=8192<BR>-8192 to
8192<BR>lochanaft<BR>hichanaft<BR>Defines the range of last Channel Aftertouch
message required for the region to play.<BR>Examples:<BR>lochanaft=30
hichanaft=100<BR>The region will play only if last Channel Aftertouch message
received was in the<BR>30~100 range.<BR>integer<BR>lochanaft=0,
hichanaft=127<BR>0 to 127<BR>lopolyaft<BR>hipolyaft<BR>Defines the range of last
Polyphonic Aftertouch message required for the region to<BR>play.<BR>The
incoming note<BR> information in the Polyphonic Aftertouch message is not
relevant.<BR>Examples:<BR>lopolyaft=30 hipolyaft=100<BR>The region will play
only if last Polyphonic Aftertouch message received was in the<BR>30~100
range.<BR>integer<BR>lopolyaft=0, hipolyaft=127<BR>0 to
127<BR>lorand<BR>hirand<BR>Random values. The player will generate a new random
number on every note-on event,<BR>in the range 0~1.<BR>The region will play if
the random number is equal to or higher than<BR> lorand, and lower than
hirand.<BR>Examples:<BR>lorand=0.2 hirand=0.4<BR>lorand=0.4 hirand=1<BR>floating
point<BR>lorand = 0<BR>hirand = 1<BR>0 to 1<BR>lobpm<BR>hibpm<BR>Host tempo
value. The region will play if the host tempo is equal to or higher
than<BR> lobpm<BR>, and lower than<BR>hibpm.<BR>Examples:<BR>lobpm=0
hibpm=100<BR>lobpm=100 hibpm=200.5<BR>floating point<BR>lobpm = 0<BR>hibpm =
500<BR>0 to 500 bpm<BR>seq_length<BR>Sequence length. The player will keep an
internal counter creating a consecutive<BR>note-on sequence for each region,
starting at 1 and resetting
at<BR>seq_length.<BR>Examples:<BR>seq_length=3<BR>integer<BR>1<BR>1 to
100<BR>seq_position<BR>Sequence position. The region will play if the internal
sequence counter is equal<BR>to<BR>seq_position.<BR>Examples:<BR>seq_length=4
seq_position=2<BR>In above example, the region will play on the second note
every four notes.<BR>integer<BR>1<BR>1 to 100<BR>sw_lokey<BR>sw_hikey<BR>Defines
the range of the keyboard to be used as trigger selectors for the<BR>sw_last
opcode.<BR>sw_lokey and sw_hikey<BR> can be entered in either MIDI note
numbers (0 to 127) or in MIDI note names (C-1<BR>to
G9)<BR>Examples:<BR>sw_lokey=48 sw_hikey=53<BR>integer<BR>sw_lokey=0,
sw_hikey=127<BR>0 to 127<BR>C-1 to G9<BR>sw_last<BR>Enables the region to play
if the last key pressed in the range specified by<BR>sw_lokey and
sw_hikey<BR> is equal to the<BR>sw_last value.<BR>sw_last<BR>can be entered
in either MIDI note numbers (0 to 127) or in MIDI note names (C-1<BR>to
G9)<BR>Examples:<BR>sw_last=49<BR>integer<BR>0<BR>0 to 127<BR>C-1 to
G9<BR>sw_down<BR>Enables the region to play if the key equal to<BR>sw_down value
is depressed.<BR>Key has to be in the range specified by sw_lokey<BR>and
sw_hikey.<BR>sw_down<BR>can be entered in either MIDI note numbers (0 to 127) or
in MIDI note names (C-1<BR>to
G9)<BR>Examples:<BR>sw_down=Cb3<BR>integer<BR>0<BR>0 to 127<BR>C-1 to
G9<BR>sw_up<BR>Enables the region to play if the key equal to
sw_up<BR> value is not depressed.<BR>Key has to be in the range specified
by sw_lokey<BR>and sw_hikey.<BR>sw_up<BR>can be entered in either MIDI note
numbers (0 to 127) or in MIDI note names (C-1<BR>to
G9)<BR>Examples:<BR>sw_up=49<BR>integer<BR>0<BR>0 to 127<BR>C-1 to
G9<BR>sw_previous<BR>Previous note value. The region will play if last note-on
message was equal to<BR>sw_previous value.<BR>sw_previous<BR>can be entered in
either MIDI note numbers (0 to 127) or in MIDI note names (C-1<BR>to
G9)<BR>Examples:<BR>sw_previous=60<BR>integer<BR>none<BR>0 to 127<BR>C-1 to
G9<BR>sw_vel<BR>This opcode allows overriding the velocity for the region with
the velocity of the<BR>previous note. Values can be:<BR>current: Region uses the
velocity of current note.<BR>previous<BR>: Region uses the velocity of the
previous note.<BR>Examples:<BR>sw_vel=previous<BR>text<BR>current<BR>current,
previous<BR>trigger<BR>Sets the trigger which will be used for the sample to
play. Values can be:<BR>attack (default): Region will play on
note-on.<BR>release:<BR> Region will play on note-off. The velocity used to
play the note-off sample is the<BR>velocity value of the corresponding
(previous) note-on message.<BR>first:<BR>Region will play on note-on, but if
there's no other note going on (staccato, or<BR>first note in a legato
phrase).<BR>legato:<BR> Region will play on note-on, but only if there's a
note going on (notes after first<BR>note in a legato
phrase).<BR>Examples:<BR>trigger=release<BR>integer<BR>attack<BR>attack,<BR>release,
first, legato<BR>group<BR>Exclusive group number for this
region.<BR>Examples:<BR>group=3<BR>group=334<BR>integer<BR>0<BR>0 to 4Gb
(4294967296)<BR>off_by<BR>Region off group. When a new region with a group
number equal to<BR>off_by<BR> plays, this region will be turned
off.<BR>Examples:<BR>off_by=3<BR>off_by=334<BR>integer<BR>0<BR>0 to 4Gb
(4294967296)<BR>off_mode<BR>Region off mode. This opcode will determinate how a
region is turned off by an<BR>off_by<BR> opcode. Values can
be:<BR>fast<BR> (default): The voice will be turned off immediately.
Release settings will not have<BR>any effect.<BR>normal<BR>: The region will be
set into release stage. All envelope generators will enter in<BR>release stage,
and region will expire when the amplifier envelope generator
expired.<BR>Examples:<BR>off_mode=fast<BR>off_mode=normal<BR>text<BR>fast<BR>fast,
normal<BR>on_loccN<BR>on_hiccN<BR>Sample trigger on MIDI continuous control N.
If a MIDI control message with a value<BR>between<BR>on_loccN and
on_hiccN<BR> is received, the region will play.<BR>Examples:<BR>on_locc1=0
on_hicc1=0<BR>Region will play when a MIDI CC1 (modulation wheel) message with
zero value is received.<BR>integer<BR>-1 (unassigned)<BR>0 to 127<BR>Performance
Parameters<BR>Sample Player<BR>delay<BR>Region delay time, in seconds.<BR>If a
delay<BR> value is specified, the region playback will be postponed for the
specified time.<BR>If the region receives a note-off message before delay time,
the region won't play.<BR>All envelope generators delay stage will start
counting after region delay
time.<BR>Examples:<BR>delay=1<BR>delay=0.2<BR>floating point<BR>0<BR>0 to 100
seconds<BR>delay_random<BR>Region random delay time, in seconds.<BR>If the
region receives a note-off message before delay time, the region won't
play.<BR>Examples:<BR>delay_random=1<BR>delay_random=0.2<BR>floating
point<BR>0<BR>0 to 100 seconds<BR>delay_ccN<BR>Region delay time after MIDI
continuous controller N messages are received, in seconds.<BR>If the region
receives a note-off message before delay time, the region won't
play.<BR>Examples:<BR>delay_cc1=1<BR>delay_cc2=.5<BR>floating point<BR>0<BR>0 to
100 seconds<BR>offset<BR>The offset used to play the sample, in sample
units.<BR>The player will reproduce samples starting with the very first sample
in the file,<BR>unless<BR>offset<BR> is specified. It will start playing
the file at the<BR>offset<BR> sample in this
case.<BR>Examples:<BR>offset=3000<BR>offset=32425<BR>integer<BR>0<BR>0 to 4 Gb
(4294967296)<BR>offset_random<BR>Random offset added to the region offset, in
sample
units.<BR>Examples:<BR>offset_random=300<BR>offset_random=100<BR>integer<BR>0<BR>0
to 4 Gb (4294967296)<BR>offset_ccN<BR>The offset used to play the sample
according to last position of MIDI continuous<BR>controller N, in sample
units.<BR>This opcode is useful to specify an alternate sample start point based
on MIDI
controllers.<BR>Examples:<BR>offset_cc1=3000<BR>offset_cc64=1388<BR>integer<BR>0<BR>0
to 4 Gb (4294967296)<BR>end<BR>The endpoint of the sample, in sample
units.<BR>The player will reproduce the whole sample if end<BR> is not
specified.<BR>If end value is -1, the sample will not play. Marking a region end
with -1 can be<BR>used to use a silent region to turn off other regions by using
the<BR>group and<BR>off_by
opcodes.<BR>Examples:<BR>end=133000<BR>end=4432425<BR>integer<BR>0<BR>-1 to 4 Gb
(4294967296)<BR>count<BR>The number of times the sample will be played. If this
opcode is specified, the sample<BR>will restart as many times as defined.
Envelope generators will not be retriggered<BR>on sample restart.<BR>When this
opcode is defined, loopmode is automatically set
to<BR>one_shot.<BR>Examples:<BR>count=3<BR>count=2<BR>integer<BR>0<BR>0 to 4 Gb
(4294967296)<BR>loop_mode<BR>If loop_mode<BR> is not specified, each sample
will play according to its predefined loop mode. That<BR>is, the player will
play the sample looped using the first defined loop, if available.<BR>If no
loops are defined, the wave will play unlooped.<BR>The loop_mode<BR> opcode
allows playing samples with loops defined in the unlooped mode. The
possible<BR>values are:<BR>no_loop:<BR> no looping will be performed.
Sample will play straight from start to end, or until<BR>note off, whatever
reaches first.<BR>one_shot:<BR> sample will play from start to end,
ignoring note off.<BR>This mode is engaged automatically if the
count<BR> opcode is defined.<BR>loop_continuous:<BR> once the player
reaches sample loop point, the loop will play until note
expiration.<BR>loop_sustain:<BR> the player will play the loop while the
note is held, by keeping it depressed or<BR>by using the sustain pedal (CC64).
The rest of the sample will play after note
release.<BR>Examples:<BR>loop_mode=no_loop<BR>loop_mode=loop_continuous<BR>text<BR>no_loop<BR> for
samples without a loop defined,<BR>loop_continuous<BR> for samples with
defined loop(s).<BR>n/a<BR>loop_start<BR>The loop start point, in samples.<BR>If
loop_start<BR> is not specified and the sample has a loop defined, the
sample start point will<BR>be used.<BR>If loop_start<BR> is specified, it
will overwrite the loop start point defined in the sample.<BR>This opcode will
not have any effect if loopmode is set
to<BR>no_loop.<BR>Examples:<BR>loop_start=4503<BR>loop_start=12445<BR>integer<BR>0<BR>0
to 4 Gb (4294967296)<BR>loop_end<BR>The loop end point, in samples. This opcode
will not have any effect if loopmode<BR>is set to<BR>no_loop.<BR>If
loop_end<BR> is not specified and the sample have a loop defined, the
sample loop end point will<BR>be used.<BR>If loop_end<BR> is specified, it
will overwrite the loop end point defined in the
sample.<BR>Examples:<BR>loop_end=34503<BR>loop_end=212445<BR>integer<BR>0<BR>0
to 4 Gb (4294967296)<BR>sync_beats<BR>Region playing synchronization to host
position.<BR>When sync_beats<BR>is specified and after input controls instruct
the region to play, the playback will<BR>be postponed until the next multiple of
the specified value is crossed.<BR>Examples:<BR>sync_beats=4<BR>In this example,
if note is pressed in beat 2 of current track, note won't be played<BR>until
beat 4 reaches.<BR>This opcode will only work in hosts featuring song position
information (vstTimeInfo<BR>ppqPos).<BR>floating point<BR>0<BR>0 to 32
beats<BR>sync_offset<BR>Region playing synchronization to host position
offset.<BR>When sync_beats<BR>is specified and after input controls instruct the
region to play, the playback will<BR>be postponed until the next multiple of the
specified value plus the<BR>sync_offset value is
crossed.<BR>Examples:<BR>sync_beats=4 sync_offset=1<BR>In this example, if note
is pressed in beat 2 of current track, note won't be played<BR>until beat 5
reaches.<BR>This opcode will only work in hosts featuring song position
information (vstTimeInfo<BR>ppqPos).<BR>floating point<BR>0<BR>0 to 32
beats<BR>Pitch<BR>transpose<BR>The transposition value for this region which
will be applied to the
sample.<BR>Examples:<BR>transpose=3<BR>transpose=-4<BR>integer<BR>0<BR>-127 to
127<BR>tune<BR>The fine tuning for the sample, in cents. Range is ±1 semitone,
from -100 to 100.<BR>Only negative values must be prefixed with
sign.<BR>Examples:<BR>tune=33<BR>tune=-30<BR>tune=94<BR>integer<BR>0<BR>-100 to
100<BR>pitch_keycenter<BR>Root key for the
sample.<BR>Examples:<BR>pitch_keycenter=56<BR>pitch_keycenter=c#2<BR>integer<BR>60
(C4)<BR>-127 to 127<BR>C-1 to G9<BR>pitch_keytrack<BR>Within the region, this
value defines how much the pitch changes with every note.<BR>Default value is
100, which means pitch will change one hundred cents (one semitone)<BR>per
played note.<BR>Setting this value to zero means that all notes in the region
will play the same<BR>pitch, particularly useful when mapping drum
sounds.<BR>Examples:<BR>pitch_keytrack=20<BR>pitch_keytrack=0<BR>integer<BR>100<BR>-1200
to 1200<BR>pitch_veltrack<BR>Pitch velocity tracking, represents how much the
pitch changes with incoming note<BR>velocity, in
cents.<BR>Examples:<BR>pitch_veltrack=0<BR>pitch_veltrack=1200<BR>integer<BR>0<BR>-9600
to 9600 cents<BR>pitch_random<BR>Random tuning for the region, in cents. Random
pitch will be centered, with positive<BR>and negative
values.<BR>Examples:<BR>pitch_random=100<BR>pitch_random=400<BR>integer<BR>0<BR>0
to 9600 cents<BR>bend_up<BR>Pitch bend range when Bend Wheel or Joystick is
moved up, in
cents.<BR>Examples:<BR>bend_up=1200<BR>bend_up=100<BR>integer<BR>200<BR>-9600 to
9600<BR>bend_down<BR>Pitch bend range when Bend Wheel or Joystick is moved down,
in
cents.<BR>Examples:<BR>bend_down=1200<BR>bend_down=100<BR>integer<BR>-200<BR>-9600
to 9600<BR>bend_step<BR>Pitch bend step, in cents.<BR>Examples:<BR>bend_step=100
// glissando in semitones<BR>bend_step=200 // glissando in whole
tones<BR>integer<BR>1<BR>1 to 1200<BR>Pitch EG<BR>pitcheg_delay<BR>Pitch EG
delay time, in seconds. This is the time elapsed from note on to the start<BR>of
the Attack
stage.<BR>Examples:<BR>pitcheg_delay=1.5<BR>pitcheg_delay=0<BR>floating
point<BR>0 seconds<BR>0 to 100 seconds<BR>pitcheg_start<BR>Pitch EG start level,
in percentage.<BR>Examples:<BR>pitcheg_start=20<BR>pitcheg_start=100<BR>floating
point<BR>0 %<BR>0 to 100 %<BR>pitcheg_attack<BR>Pitch EG attack time, in
seconds.<BR>Examples:<BR>pitcheg_attack=1.2<BR>pitcheg_attack=0.1<BR>floating
point<BR>0 seconds<BR>0 to 100 seconds<BR>pitcheg_hold<BR>Pitch EG hold time, in
seconds. During the hold stage, EG output will remain at its<BR>maximum
value.<BR>Examples:<BR>pitcheg_hold=1.5<BR>pitcheg_hold=0.1<BR>floating
point<BR>0 seconds<BR>0 to 100 seconds<BR>pitcheg_decay<BR>Pitch EG decay time,
in seconds.<BR>Examples:<BR>pitcheg_decay=1.5<BR>pitcheg_decay=3<BR>floating
point<BR>0 seconds<BR>0 to 100 seconds<BR>pitcheg_sustain<BR>Pitch EG sustain
level, in
percentage.<BR>Examples:<BR>pitcheg_sustain=40.34<BR>pitcheg_sustain=10<BR>floating
point<BR>100 %<BR>0 to 100 %<BR>pitcheg_release<BR>Pitch EG release time (after
note release), in
seconds.<BR>Examples:<BR>pitcheg_release=1.34<BR>pitcheg_release=2<BR>floating
point<BR>0 seconds<BR>0 to 100 seconds<BR>pitcheg_depth<BR>Depth for the pitch
EG, in
cents.<BR>Examples:<BR>pitcheg_depth=1200<BR>pitcheg_depth=-100<BR>integer<BR>0<BR>-12000
to 12000<BR>pitcheg_vel2delay<BR>Velocity effect on pitch EG delay time, in
seconds.<BR>Examples:<BR>pitcheg_vel2delay=1.2<BR>pitcheg_vel2delay=0.1<BR>Delay
time will be calculated as<BR>delay time = pitcheg_delay<BR>+ pitcheg_vel2delay
* velocity / 127<BR>floating point<BR>0 seconds<BR>-100 to 100
seconds<BR>pitcheg_vel2attack<BR>Velocity effect on pitch EG attack time, in
seconds.<BR>Examples:<BR>pitcheg_vel2attack=1.2<BR>pitcheg_vel2attack=0.1<BR>Attack
time will be calculated as<BR>attack time = pitcheg_attack<BR>+
pitcheg_vel2attack * velocity / 127<BR>floating point<BR>0 seconds<BR>-100 to
100 seconds<BR>pitcheg_vel2hold<BR>Velocity effect on pitch EG hold time, in
seconds.<BR>Examples:<BR>pitcheg_vel2hold=1.2<BR>pitcheg_vel2hold=0.1<BR>Hold
time will be calculated as<BR>hold time = pitcheg_hold<BR>+ pitcheg_vel2hold *
velocity / 127<BR>floating point<BR>0 seconds<BR>-100 to 100
seconds<BR>pitcheg_vel2decay<BR>Velocity effect on pitch EG decay time, in
seconds.<BR>Examples:<BR>pitcheg_vel2decay=1.2<BR>pitcheg_vel2decay=0.1<BR>Decay
time will be calculated as<BR>decay time = pitcheg_decay<BR>+ pitcheg_vel2decay
* velocity / 127<BR>floating point<BR>0 seconds<BR>-100 to 100
seconds<BR>pitcheg_vel2sustain<BR>Velocity effect on pitch EG sustain level, in
percentage.<BR>Examples:<BR>pitcheg_vel2sustain=30<BR>pitcheg_vel2sustain=20<BR>Sustain
level will be calculated as<BR>sustain level = pitcheg_sustain<BR>+
pitcheg_vel2sustain<BR>floating point<BR>0 %<BR>-100 % to 100
%<BR>pitcheg_vel2release<BR>Velocity effect on pitch EG release time, in
seconds.<BR>Examples:<BR>pitcheg_vel2release=1.2<BR>pitcheg_vel2release=0.1<BR>Release
time will be calculated as<BR>release time = pitcheg_release<BR>+
pitcheg_vel2release * velocity / 127<BR>floating point<BR>0 seconds<BR>-100 to
100 seconds<BR>pitcheg_vel2depth<BR>Velocity effect on pitch EG depth, in
cents.<BR>Examples:<BR>pitcheg_vel2depth=100<BR>pitcheg_vel2depth=-1200<BR>integer<BR>0
cents<BR>-12000 to 12000 cents<BR>Pitch LFO<BR>pitchlfo_delay<BR>The time before
the Pitch LFO starts oscillating, in
seconds.<BR>Examples:<BR>pitchlfo_delay=1<BR>pitchlfo_delay=0.4<BR>floating
point<BR>0 seconds<BR>0 to 100 seconds<BR>pitchlfo_fade<BR>Pitch LFO fade-in
effect time.<BR>Examples:<BR>pitchlfo_fade=1<BR>pitchlfo_fade=0.4<BR>floating
point<BR>0 seconds<BR>0 to 100 seconds<BR>pitchlfo_freq<BR>Pitch LFO frequency,
in hertz.<BR>Examples:<BR>pitchlfo_freq=0.4<BR>pitchlfo_freq=1.3<BR>floating
point<BR>0 Hertz<BR>0 to 20 hertz<BR>pitchlfo_depth<BR>Pitch LFO depth, in
cents.<BR>Examples:<BR>pitchlfo_depth=1<BR>pitchlfo_depth=4<BR>integer<BR>0
cent<BR>-1200 to 1200 cents<BR>pitchlfo_depthccN<BR>Pitch LFO depth when MIDI
continuous controller N is received, in
cents.<BR>Examples:<BR>pitchlfo_depthcc1=100<BR>pitchlfo_depthcc32=400<BR>integer<BR>0
cent<BR>-1200 to 1200 cents<BR>pitchlfo_depthchanaft<BR>Pitch LFO depth when
channel aftertouch MIDI messages are received, in
cents.<BR>Examples:<BR>pitchlfo_depthchanaft=100<BR>pitchlfo_depthchanaft=400<BR>integer<BR>0
cent<BR>-1200 to 1200 cents<BR>pitchlfo_depthpolyaft<BR>Pitch LFO depth when
polyphonic aftertouch MIDI messages are received, in
cents.<BR>Examples:<BR>pitchlfo_depthpolyaft=100<BR>pitchlfo_depthpolyaft=400<BR>integer<BR>0
cent<BR>-1200 to 1200 cents<BR>pitchlfo_freqccN<BR>Pitch LFO frequency change
when MIDI continuous controller N is received, in
hertz.<BR>Examples:<BR>pitchlfo_freqcc1=5<BR>pitchlfo_freqcc1=-12<BR>floating
point<BR>0 hertz<BR>-200 to 200 hertz<BR>pitchlfo_freqchanaft<BR>Pitch LFO
frequency change when channel aftertouch MIDI messages are received,
in<BR>hertz.<BR>Examples:<BR>pitchlfo_freqchanaft=10<BR>pitchlfo_freqchanaft=-40<BR>floating
point<BR>0 hertz<BR>-200 to 200 hertz<BR>pitchlfo_freqpolyaft<BR>Pitch LFO
frequency change when polyphonic aftertouch MIDI messages are received,<BR>in
hertz.<BR>Examples:<BR>pitchlfo_freqpolyaft=10<BR>pitchlfo_freqpolyaft=-4<BR>floating
point<BR>0 hertz<BR>-200 to 200 hertz<BR>Filter<BR>fil_type<BR>Filter type.
Avaliable types are:<BR>lpf_1p: one-pole low pass filter
(6dB/octave).<BR>hpf_1p: one-pole high pass filter (6dB/octave).<BR>lpf_2p:
two-pole low pass filter (12dB/octave).<BR>hpf_2p: two-pole high pass filter
(12dB/octave).<BR>bpf_2p: two-pole band pass filter
(12dB/octave).<BR>brf_2p<BR>: two-pole band rejection filter
(12dB/octave).<BR>Examples:<BR>fil_type=lpf_2p<BR>fil_type=hpf_1p<BR>text<BR>lpf_2p<BR>lpf_1p,
hpf_1p, lpf_2p, hpf_2p, bpf_2p, brf_2p<BR>cutoff<BR>The filter cutoff frequency,
in Hertz.<BR>If the cutoff is not specified, the filter will be disabled, with
the consequent<BR>CPU drop in the
player.<BR>Examples:<BR>cutoff=343<BR>cutoff=4333<BR>floating point<BR>filter
disabled<BR>0 to<BR>SampleRate / 2<BR>cutoff_ccN<BR>The variation in the cutoff
frequency when MIDI continuous controller N is received,<BR>in
cents.<BR>Examples:<BR>cutoff_cc1=1200<BR>cutoff_cc2=-100<BR>integer<BR>0<BR>-9600
to 9600 cents<BR>cutoff_chanaft<BR>The variation in the cutoff frequency when
MIDI channel aftertouch messages are received,<BR>in
cents.<BR>Examples:<BR>cutoff_chanaft=1200<BR>cutoff_chanaft=-100<BR>integer<BR>0<BR>-9600
to 9600 cents<BR>cutoff_polyaft<BR>The variation in the cutoff frequency when
MIDI polyphonic aftertouch messages are<BR>received, in
cents.<BR>Examples:<BR>cutoff_polyaft=1200<BR>cutoff_polyaft=-100<BR>integer<BR>0<BR>-9600
to 9600 cents<BR>resonance<BR>The filter cutoff resonance value, in
decibels.<BR>Examples:<BR>resonance=30<BR>floating point<BR>0 dB<BR>0 to 40
dB<BR>fil_keytrack<BR>Filter keyboard tracking (change on cutoff for each key)
in cents.<BR>Examples:<BR>fil_keytrack=100<BR>fil_keytrack=0<BR>integer<BR>0
cents<BR>0 to 1200 cents<BR>fil_keycenter<BR>Center key for filter keyboard
tracking. In this key, the filter keyboard tracking<BR>will have no
effect.<BR>Examples:<BR>fil_keycenter=60<BR>fil_keycenter=48<BR>integer<BR>60<BR>0
to 127<BR>fil_veltrack<BR>Filter velocity tracking, represents how much the
cutoff changes with incoming
note<BR>velocity.<BR>Examples:<BR>fil_veltrack=0<BR>fil_veltrack=1200<BR>integer<BR>0<BR>-9600
to 9600 cents<BR>fil_random<BR>Random cutoff added to the region, in
cents.<BR>Examples:<BR>fil_random=100<BR>fil_random=400<BR>integer<BR>0<BR>0 to
9600 cents<BR>Filter EG<BR>fileg_delay<BR>Filter EG delay time, in seconds. This
is the time elapsed from note on to the start<BR>of the Attack
stage.<BR>Examples:<BR>fileg_delay=1.5<BR>fileg_delay=0<BR>floating point<BR>0
seconds<BR>0 to 100 seconds<BR>fileg_start<BR>Filter EG start level, in
percentage.<BR>Examples:<BR>fileg_start=20<BR>fileg_start=100<BR>floating
point<BR>0 %<BR>0 to 100 %<BR>fileg_attack<BR>Filter EG attack time, in
seconds.<BR>Examples:<BR>fileg_attack=1.2<BR>fileg_attack=0.1<BR>floating
point<BR>0 seconds<BR>0 to 100 seconds<BR>fileg_hold<BR>Filter EG hold time, in
seconds. During the hold stage, EG output will remain at<BR>its maximum
value.<BR>Examples:<BR>fileg_hold=1.5<BR>fileg_hold=0.1<BR>floating point<BR>0
seconds<BR>0 to 100 seconds<BR>fileg_decay<BR>Filter EG decay time, in
seconds.<BR>Examples:<BR>fileg_decay=1.5<BR>fileg_decay=3<BR>floating point<BR>0
seconds<BR>0 to 100 seconds<BR>fileg_sustain<BR>Filter EG sustain level, in
percentage.<BR>Examples:<BR>fileg_sustain=40.34<BR>fileg_sustain=10<BR>floating
point<BR>100 %<BR>0 to 100 %<BR>fileg_release<BR>Filter EG release time (after
note release), in
seconds.<BR>Examples:<BR>fileg_release=1.34<BR>fileg_release=2<BR>floating
point<BR>0 seconds<BR>0 to 100 seconds<BR>fileg_depth<BR>Depth for the filter
EG, in
cents.<BR>Examples:<BR>fileg_depth=1200<BR>fileg_depth=-100<BR>integer<BR>0<BR>-12000
to 12000<BR>fileg_vel2delay<BR>Velocity effect on filter EG delay time, in
seconds.<BR>Examples:<BR>fileg_vel2delay=1.2<BR>fileg_vel2delay=0.1<BR>Delay
time will be calculated as<BR>delay time = fileg_delay<BR>+ fileg_vel2delay *
velocity / 127<BR>floating point<BR>0 seconds<BR>-100 to 100
seconds<BR>fileg_vel2attack<BR>Velocity effect on filter EG attack time, in
seconds.<BR>Examples:<BR>fil_vel2attack=1.2<BR>fil_vel2attack=0.1<BR>Attack time
will be calculated as<BR>attack time = fileg_attack<BR>+ fileg_vel2attack *
velocity / 127<BR>floating point<BR>0 seconds<BR>-100 to 100
seconds<BR>fileg_vel2hold<BR>Velocity effect on filter EG hold time, in
seconds.<BR>Examples:<BR>fileg_vel2hold=1.2<BR>fileg_vel2hold=0.1<BR>Hold time
will be calculated as<BR>hold time = fileg_hold<BR>+ fileg_vel2hold * velocity /
127<BR>floating point<BR>0 seconds<BR>-100 to 100
seconds<BR>fileg_vel2decay<BR>Velocity effect on filter EG decay time, in
seconds.<BR>Examples:<BR>fileg_vel2decay=1.2<BR>fileg_vel2decay=0.1<BR>Decay
time will be calculated as<BR>decay time = fileg_decay<BR>+ fileg_vel2decay *
velocity / 127<BR>floating point<BR>0 seconds<BR>-100 to 100
seconds<BR>fileg_vel2sustain<BR>Velocity effect on filter EG sustain level, in
percentage.<BR>Examples:<BR>fileg_vel2sustain=30<BR>fileg_vel2sustain=-30<BR>Sustain
level will be calculated as<BR>sustain level = fileg_sustain +
fileg_vel2sustain<BR>Result will be clipped to 0~100%.<BR>floating point<BR>0
%<BR>-100 % to 100 %<BR>fileg_vel2release<BR>Velocity effect on filter EG
release time, in
seconds.<BR>Examples:<BR>fileg_vel2release=1.2<BR>fileg_vel2release=0.1<BR>Release
time will be calculated as<BR>release time = fileg_release<BR>+
fileg_vel2release * velocity / 127<BR>floating point<BR>0 seconds<BR>-100 to 100
seconds<BR>fileg_vel2depth<BR>Velocity effect on filter EG depth, in
cents.<BR>Examples:<BR>fileg_vel2depth=100<BR>fileg_vel2depth=-1200<BR>integer<BR>0
cents<BR>-12000 to 12000 cents<BR>Filter LFO<BR>fillfo_delay<BR>The time before
the filter LFO starts oscillating, in
seconds.<BR>Examples:<BR>fillfo_delay=1<BR>fillfo_delay=0.4<BR>floating
point<BR>0 seconds<BR>0 to 100 seconds<BR>fillfo_fade<BR>Filter LFO fade-in
effect time.<BR>Examples:<BR>fillfo_fade=1<BR>fillfo_fade=0.4<BR>floating
point<BR>0 seconds<BR>0 to 100 seconds<BR>fillfo_freq<BR>Filter LFO frequency,
in hertz.<BR>Examples:<BR>fillfo_freq=0.4<BR>fillfo_freq=1.3<BR>floating
point<BR>0 Hertz<BR>0 to 20 hertz<BR>fillfo_depth<BR>Filter LFO depth, in
cents.<BR>Examples:<BR>fillfo_depth=1<BR>fillfo_depth=4<BR>floating point<BR>0
dB<BR>-1200 to 1200 cents<BR>fillfo_depthccN<BR>Filter LFO depth when MIDI
continuous controller N is received, in
cents.<BR>Examples:<BR>fillfo_depthcc1=100<BR>fillfo_depthcc32=400<BR>integer<BR>0
cent<BR>-1200 to 1200 cents<BR>fillfo_depthchanaft<BR>Filter LFO depth when
channel aftertouch MIDI messages are received, in
cents.<BR>Examples:<BR>fillfo_depthchanaft=100<BR>fillfo_depthchanaft=400<BR>integer<BR>0
cent<BR>-1200 to 1200 cents<BR>fillfo_depthpolyaft<BR>Filter LFO depth when
polyphonic aftertouch MIDI messages are received, in
cents.<BR>Examples:<BR>fillfo_depthpolyaft=100<BR>fillfo_depthpolyaft=400<BR>integer<BR>0
cent<BR>-1200 to 1200 cents<BR>fillfo_freqccN<BR>Filter LFO frequency change
when MIDI continuous controller N is received, in
hertz.<BR>Examples:<BR>fillfo_freqcc1=5<BR>fillfo_freqcc1=-12<BR>floating
point<BR>0 hertz<BR>-200 to 200 hertz<BR>fillfo_freqchanaft<BR>Filter LFO
frequency change when channel aftertouch MIDI messages are received,
in<BR>hertz.<BR>Examples:<BR>fillfo_freqchanaft=10<BR>fillfo_freqchanaft=-40<BR>floating
point<BR>0 hertz<BR>-200 to 200 hertz<BR>fillfo_freqpolyaft<BR>Filter LFO
frequency change when polyphonic aftertouch MIDI messages are received,<BR>in
hertz.<BR>Examples:<BR>fillfo_freqpolyaft=10<BR>fillfo_freqpolyaft=-4<BR>floating
point<BR>0 hertz<BR>-200 to 200 hertz<BR>Amplifier<BR>volume<BR>The volume for
the region, in
decibels.<BR>Examples:<BR>volume=-24<BR>volume=0<BR>volume=3.5<BR>floating
point<BR>0.0<BR>-144 to 6 dB<BR>pan<BR>The panoramic position for the
region.<BR>If a mono sample is used, pan<BR> value defines the position in
the stereo image where the sample will be placed.<BR>When a stereo sample is
used, the pan value the relative amplitude of one channel<BR>respect the
other.<BR>A value of zero means centered, negative values move the panoramic to
the left, positive<BR>to the
right.<BR>Examples:<BR>pan=-30.5<BR>pan=0<BR>pan=43<BR>floating
point<BR>0.0<BR>-100 to 100<BR>width<BR>Only operational for stereo samples,
width<BR> defines the amount of channel mixing applied to play the
sample.<BR>A width<BR> value of 0 makes a stereo sample play as if it were
mono (adding both channels and<BR>compensating for the resulting volume change).
A value of 100 will make the stereo<BR>sample play as original.<BR>Any value in
between will mix left and right channels with a part of the other,
resulting<BR>in a narrower stereo field image.<BR>Negative width<BR>values will
reverse left and right channels.<BR>Examples:<BR>width=100 // stereo<BR>width=0
// play this stereo sample as mono<BR>width=50 // mix 50% of one channel with
the other<BR>floating point<BR>0.0<BR>-100 to 100 %<BR>position<BR>Only
operational for stereo samples, position<BR> defines the position in the
stereo field of a stereo signal, after channel mixing<BR>as defined in
the<BR>width opcode.<BR>A value of zero means centered, negative values move the
panoramic to the left, positive<BR>to the right.<BR>Examples:<BR>// mix both
channels and play the result at left<BR>width=0 position=-100<BR>// make the
stereo image narrower and play it<BR>// slightly right<BR>width=50
position=30<BR>floating point<BR>0.0<BR>-100 to 100
%<BR>amp_keytrack<BR>Amplifier keyboard tracking (change in amplitude per key)
in dB.<BR>Examples:<BR>amp_keytrack=-1.4<BR>amp_keytrack=3<BR>floating
point<BR>0 dB<BR>-96 to 12 dB<BR>amp_keycenter<BR>Center key for amplifier
keyboard tracking. In this key, the amplifier keyboard tracking<BR>will have no
effect.<BR>Examples:<BR>amp_keycenter=60<BR>amp_keycenter=48<BR>integer<BR>60<BR>0
to 127<BR>amp_veltrack<BR>Amplifier velocity tracking, represents how much the
amplitude changes with incoming<BR>note velocity.<BR>Volume changes with
incoming velocity in a concave shape according to the
following<BR>expression:<BR>Amplitude(dB) = 20 log (127^2 / Velocity^2)<BR>The
amp_velcurve_N<BR> opcodes allow overriding the default velocity
curve.<BR>Examples:<BR>amp_veltrack=0<BR>amp_veltrack=100<BR>floating
point<BR>100 %<BR>-100 to 100
%<BR>amp_velcurve_1<BR>amp_velcurve_127<BR>User-defined amplifier velocity
curve. This opcode range allows defining a specific<BR>curve for the amplifier
velocity. The value of the opcode indicates the normalized<BR>amplitude (0 to 1)
for the specified velocity.<BR>The player will interpolate lineraly between
specified opcodes for unspecified ones:<BR>amp_velcurve_1=0.2
amp_velcurve_3=0.3<BR>// amp_velcurve_2 is calculated to 0.25<BR>If
amp_velcurve_127<BR> is not specified, the player will assign it the value
of 1.<BR>Examples:<BR>// linear, compressed dynamic range<BR>// amplitude
changes from 0.5 to 1<BR>amp_velcurve_1=0.5<BR>floating point<BR>standard curve
(see<BR>amp_veltrack)<BR>0 to 1<BR>amp_random<BR>Random volume for the region,
in decibels.<BR>Examples:<BR>amp_random=10<BR>amp_random=3<BR>floating
point<BR>0<BR>0 to 24 dB<BR>rt_decay<BR>The volume decay amount when the region
is set to play in<BR>release<BR> trigger mode, in decibels per second since
note-on message.<BR>Examples:<BR>rt_decay=6.5<BR>floating point<BR>0 dB<BR>0 to
200 dB<BR>output<BR>The stereo output number for this region.<BR>If the player
doesn't feature multiple outputs, this opcode is
ignored.<BR>Examples:<BR>output=0<BR>output=4<BR>integer<BR>0<BR>0 to
1024<BR>gain_ccN<BR>Gain applied on MIDI control N, in
decibels.<BR>Examples:<BR>gain_cc1=12<BR>floating point<BR>0<BR>-144 to 48
dB<BR>xfin_lokey<BR>xfin_hikey<BR>Fade in control.<BR>xfin_lokey and
xfin_hikey<BR> define the fade-in keyboard zone for the region.<BR>The
volume of the region will be zero for keys lower than or equal
to<BR>xfin_lokey<BR>, and maximum (as defined by the<BR>volume<BR> opcode)
for keys greater than or equal to<BR>xfin_hikey.<BR>Examples:<BR>xfin_lokey=c3
xfin_hikey=c4<BR>integer<BR>xfin_lokey=0<BR>xfin_hikey=0<BR>0 to 127<BR>C-1 to
G9<BR>xfout_lokey<BR>xfout_hikey<BR>Fade out control.<BR>xfout_lokey and
xfout_hikey<BR> define the fade-out keyboard zone for the region.<BR>The
volume of the region will be maximum (as defined by
the<BR>volume<BR> opcode) for keys lower than or equal
to<BR>xfout_lokey<BR>, and zero for keys greater than or equal
to<BR>xfout_hikey.<BR>Examples:<BR>xfout_lokey=c5
xfout_hikey=c6<BR>integer<BR>xfout_lokey=127<BR>xfout_hikey=127<BR>0 to
127<BR>C-1 to G9<BR>xf_keycurve<BR>Keyboard crossfade curve for the region.
Values can be:<BR>gain:<BR>Linear gain crossfade. This setting is best when
crossfading phase-aligned material.<BR>Linear gain crossfades keep constant
amplitude during the crossfade, preventing
clipping.<BR>power:<BR> Equal-power RMS crossfade. This setting works
better to mix very different material,<BR>as a constant power level is kept
during the crossfade.<BR>text<BR>power<BR>gain,
power<BR>xfin_lovel<BR>xfin_hivel<BR>Fade in control.<BR>xfin_lovel and
xfin_hivel<BR> define the fade-in velocity range for the region.<BR>The
volume of the region will be zero for velocities lower than or equal
to<BR>xfin_lovel<BR>, and maximum (as defined by the<BR>volume<BR> opcode)
for velocities greater than or equal
to<BR>xfin_hivel.<BR>Examples:<BR>xfin_lovel=0
xfin_hivel=127<BR>integer<BR>xfin_lovel=0<BR>xfin_hivel=0<BR>0 to
127<BR>xfout_lovel<BR>xfout_hivel<BR>Fade out control.<BR>xfout_lokey and
xfout_hikey<BR> define the fade-out velocity range for the region.<BR>The
volume of the region will be maximum (as defined by
the<BR>volume<BR> opcode) for velocities lower than or equal
to<BR>xfout_lovel<BR>, and zero for velocities greater than or equal
to<BR>xfout_hivel.<BR>Examples:<BR>xfout_lovel=0
xfout_hivel=127<BR>integer<BR>xfout_lokey=127<BR>xfout_hikey=127<BR>0 to
127<BR>xf_velcurve<BR>Velocity crossfade curve for the region. Values can
be:<BR>gain:<BR>Linear gain crossfade. This setting is best when crossfading
phase-aligned material.<BR>Linear gain crossfades keep constant amplitude during
the crossfade, preventing clipping.<BR>power:<BR> Equal-power RMS
crossfade. This setting works better to mix very different material,<BR>as a
constant power level is kept during the crossfade.<BR>text<BR>power<BR>gain,
power<BR>xfin_loccN<BR>xfin_hiccN<BR>Fade in control.<BR>xfin_loccN and
xfin_hiccN<BR> set the range of values in the MIDI continuous controller N
which will perform a<BR>fade-in in the region.<BR>The volume of the region will
be zero for values of the MIDI continuous controller<BR>N lower than or equal
to<BR>xfin_loccN, and maximum (as defined by the<BR>volume opcode) for values
greater than or equal to<BR>xfin_hiccN.<BR>Examples:<BR>xfin_locc1=64
xfin_hicc1=127<BR>integer<BR>0<BR>0 to 127<BR>xfout_loccN<BR>xfout_hiccN<BR>Fade
out control.<BR>xfout_loccN and xfout_hiccN<BR> set the range of values in
the MIDI continuous controller N which will perform a<BR>fade-out in the
region.<BR>The volume of the region will be maximum (as defined by
the<BR>volume<BR> opcode) for values of the MIDI continuous controller N
lower than or equal to<BR>xfout_loccN<BR>, and zero for values greater than or
equal to<BR>xfout_hiccN.<BR>Examples:<BR>xfout_locc1=64
xfout_hicc1=127<BR>integer<BR>0<BR>0 to 127<BR>xf_cccurve<BR>MIDI controllers
crossfade curve for the region. Values can be:<BR>gain:<BR>Linear gain
crossfade. This setting is best when crossfading phase-aligned
material.<BR>Linear gain crossfades keep constant amplitude during the
crossfade, preventing clipping.<BR>power:<BR> Equal-power RMS crossfade.
This setting works better to mix very different material,<BR>as a constant power
level is kept during the crossfade.<BR>text<BR>power<BR>gain, power<BR>Amplifier
EG<BR>ampeg_delay<BR>Amplifier EG delay time, in seconds. This is the time
elapsed from note on to the<BR>start of the Attack
stage.<BR>Examples:<BR>ampeg_delay=1.5<BR>ampeg_delay=0<BR>floating point<BR>0
seconds<BR>0 to 100 seconds<BR>ampeg_start<BR>Amplifier EG start level, in
percentage.<BR>Examples:<BR>ampeg_start=20<BR>ampeg_start=100<BR>floating
point<BR>0 %<BR>0 to 100 %<BR>ampeg_attack<BR>Amplifier EG attack time, in
seconds.<BR>Examples:<BR>ampeg_attack=1.2<BR>ampeg_attack=0.1<BR>floating
point<BR>0 seconds<BR>0 to 100 seconds<BR>ampeg_hold<BR>Amplifier EG hold time,
in seconds. During the hold stage, EG output will remain<BR>at its maximum
value.<BR>Examples:<BR>ampeg_hold=1.5<BR>ampeg_hold=0.1<BR>floating point<BR>0
seconds<BR>0 to 100 seconds<BR>ampeg_decay<BR>Amplifier EG decay time, in
seconds.<BR>Examples:<BR>ampeg_decay=1.5<BR>ampeg_decay=3<BR>floating point<BR>0
seconds<BR>0 to 100 seconds<BR>ampeg_sustain<BR>Amplifier EG sustain level, in
percentage.<BR>Examples:<BR>ampeg_sustain=40.34<BR>ampeg_sustain=10<BR>floating
point<BR>100 %<BR>0 to 100 %<BR>ampeg_release<BR>Amplifier EG release time
(after note release), in
seconds.<BR>Examples:<BR>ampeg_release=1.34<BR>ampeg_release=2<BR>floating
point<BR>0 seconds<BR>0 to 100 seconds<BR>ampeg_vel2delay<BR>Velocity effect on
amplifier EG delay time, in
seconds.<BR>Examples:<BR>ampeg_vel2delay=1.2<BR>ampeg_vel2delay=0.1<BR>Delay
time will be calculated as<BR>delay time = ampeg_delay<BR>+ ampeg_vel2delay *
velocity / 127<BR>floating point<BR>0 seconds<BR>-100 to 100
seconds<BR>ampeg_vel2attack<BR>Velocity effect on amplifier EG attack time, in
seconds.<BR>Examples:<BR>ampeg_vel2attack=1.2<BR>ampeg_vel2attack=0.1<BR>Attack
time will be calculated as<BR>attack time = ampeg_attack<BR>+ ampeg_vel2attack *
velocity / 127<BR>floating point<BR>0 seconds<BR>-100 to 100
seconds<BR>ampeg_vel2hold<BR>Velocity effect on amplifier EG hold time, in
seconds.<BR>Examples:<BR>ampeg_vel2hold=1.2<BR>ampeg_vel2hold=0.1<BR>Hold time
will be calculated as<BR>hold time = ampeg_hold<BR>+ ampeg_vel2hold * velocity /
127<BR>floating point<BR>0 seconds<BR>-100 to 100
seconds<BR>ampeg_vel2decay<BR>Velocity effect on amplifier EG decay time, in
seconds.<BR>Examples:<BR>ampeg_vel2decay=1.2<BR>ampeg_vel2decay=0.1<BR>Decay
time will be calculated as<BR>decay time = ampeg_decay<BR>+ ampeg_vel2decay *
velocity / 127<BR>floating point<BR>0 seconds<BR>-100 to 100
seconds<BR>ampeg_vel2sustain<BR>Velocity effect on amplifier EG sustain level,
in
percentage.<BR>Examples:<BR>ampeg_vel2sustain=30<BR>ampeg_vel2sustain=-30<BR>Sustain
level will be calculated as<BR>sustain level= ampeg_sustain<BR>+
ampeg_vel2sustain<BR>The result will be clipped to 0~100%.<BR>floating
point<BR>0%<BR>-100 % to 100 %<BR>ampeg_vel2release<BR>Velocity effect on
amplifier EG release time, in
seconds.<BR>Examples:<BR>ampeg_vel2release=1.2<BR>ampeg_vel2release=0.1<BR>Release
time will be calculated as<BR>release time = ampeg_release<BR>+
ampeg_vel2release * velocity / 127<BR>floating point<BR>0 seconds<BR>-100 to 100
seconds<BR>ampeg_delayccN<BR>Amplifier EG delay time added on MIDI control N, in
seconds.<BR>Examples:<BR>ampeg_delaycc20=1.5<BR>ampeg_delaycc1=0<BR>floating
point<BR>0 seconds<BR>-100 to 100 seconds<BR>ampeg_startccN<BR>Amplifier EG
start level added on MIDI control N, in
percentage.<BR>Examples:<BR>ampeg_startcc20=20<BR>ampeg_startcc1=100<BR>floating
point<BR>0 %<BR>-100 to 100 %<BR>ampeg_attackccN<BR>Amplifier EG attack time
added on MIDI control N, in
seconds.<BR>Examples:<BR>ampeg_attackcc20=1.2<BR>ampeg_attackcc1=0.1<BR>floating
point<BR>0 seconds<BR>-100 to 100 seconds<BR>ampeg_holdccN<BR>Amplifier EG hold
time added on MIDI control N, in
seconds.<BR>Examples:<BR>ampeg_holdcc20=1.5<BR>ampeg_holdcc1=0.1<BR>floating
point<BR>0 seconds<BR>-100 to 100 seconds<BR>ampeg_decayccN<BR>Amplifier EG
decay time added on MIDI control N, in
seconds.<BR>Examples:<BR>ampeg_decaycc20=1.5<BR>ampeg_decaycc1=3<BR>floating
point<BR>0 seconds<BR>-100 to 100 seconds<BR>ampeg_sustainccN<BR>Amplifier EG
sustain level added on MIDI control N, in
percentage.<BR>Examples:<BR>ampeg_sustaincc20=40.34<BR>ampeg_sustaincc1=10<BR>floating
point<BR>100 %<BR>-100 to 100 %<BR>ampeg_releaseccN<BR>Amplifier EG release time
added on MIDI control N, in
seconds.<BR>Examples:<BR>ampeg_releasecc20=1.34<BR>ampeg_releasecc1=2<BR>floating
point<BR>0 seconds<BR>-100 to 100 seconds<BR>Amplifier
LFO<BR>amplfo_delay<BR>The time before the Amplifier LFO starts oscillating, in
seconds.<BR>Examples:<BR>amplfo_delay=1<BR>amplfo_delay=0.4<BR>floating
point<BR>0 seconds<BR>0 to 100 seconds<BR>amplfo_fade<BR>Amplifier LFO fade-in
effect time.<BR>Examples:<BR>amplfo_fade=1<BR>amplfo_fade=0.4<BR>floating
point<BR>0 seconds<BR>0 to 100 seconds<BR>amplfo_freq<BR>Amplifier LFO
frequency, in
hertz.<BR>Examples:<BR>amplfo_freq=0.4<BR>amplfo_freq=1.3<BR>floating point<BR>0
Hertz<BR>0 to 20 hertz<BR>amplfo_depth<BR>Amplifier LFO depth, in
decibels.<BR>Examples:<BR>amplfo_depth=1<BR>amplfo_depth=4<BR>floating
point<BR>0 dB<BR>-10 to 10 dB<BR>amplfo_depthccN<BR>Amplifier LFO depth when
MIDI continuous controller N is received, in
decibels.<BR>Examples:<BR>amplfo_depthcc1=100<BR>amplfo_depthcc32=400<BR>floating
point<BR>0 dB<BR>-10 to 10 dB<BR>amplfo_depthchanaft<BR>Amplifier LFO depth when
channel aftertouch MIDI messages are received, in
cents.<BR>Examples:<BR>amplfo_depthchanaft=100<BR>amplfo_depthchanaft=400<BR>floating
point<BR>0 dB<BR>-10 to 10 dB<BR>amplfo_depthpolyaft<BR>Amplifier LFO depth when
polyphonic aftertouch MIDI messages are received, in
cents.<BR>Examples:<BR>amplfo_depthpolyaft=100<BR>amplfo_depthpolyaft=400<BR>floating
point<BR>0 dB<BR>-10 to 10 dB<BR>amplfo_freqccN<BR>Amplifier LFO frequency
change when MIDI continuous controller N is received,
in<BR>hertz.<BR>Examples:<BR>amplfo_freqcc1=5<BR>amplfo_freqcc1=-12<BR>floating
point<BR>0 hertz<BR>-200 to 200 hertz<BR>amplfo_freqchanaft<BR>Amplifier LFO
frequency change when channel aftertouch MIDI messages are received,<BR>in
hertz.<BR>Examples:<BR>amplfo_freqchanaft=10<BR>amplfo_freqchanaft=-40<BR>floating
point<BR>0 hertz<BR>-200 to 200 hertz<BR>amplfo_freqpolyaft<BR>Amplifier LFO
frequency change when polyphonic aftertouch MIDI messages are received,<BR>in
hertz.<BR>Examples:<BR>amplfo_freqpolyaft=10<BR>amplfo_freqpolyaft=-4<BR>floating
point<BR>0 hertz<BR>-200 to 200
hertz<BR>Equalizer<BR>eq1_freq<BR>eq2_freq<BR>eq3_freq<BR>Frequency of the
equalizer band, in Hertz.<BR>Examples:<BR>eq1_freq=80 eq2_freq=1000
eq3_freq=4500<BR>floating
point<BR>eq1_freq=50<BR>eq2_freq=500<BR>eq3_freq=5000<BR>0 to 30000
Hz<BR>eq1_freqccN<BR>eq2_freqccN<BR>eq3_freqccN<BR>Frequency change of the
equalizer band when MIDI continuous control N messages are<BR>received, in
Hertz.<BR>Examples:<BR>eq1_freqcc1=80<BR>floating point<BR>0<BR>-30000 to 30000
Hz<BR>eq1_vel2freq<BR>eq2_vel2freq<BR>eq3_vel2freq<BR>Frequency change of the
equalizer band with MIDI velocity, in
Hertz.<BR>Examples:<BR>eq1_vel2freq=1000<BR>floating point<BR>0<BR>-30000 to
30000 Hz<BR>eq1_bw<BR>eq2_bw<BR>eq3_bw<BR>Bandwidth of the equalizer band, in
octaves.<BR>Examples:<BR>eq1_bw=1 eq2_bw=0.4 eq3_bw=1.4<BR>floating point<BR>1
octave<BR>0.001 to 4 octaves<BR>eq1_bwccN<BR>eq2_bwccN<BR>eq3_bwccN<BR>Bandwidth
change of the equalizer band when MIDI continuous control N messages
are<BR>received, in octaves.<BR>Examples:<BR>eq1_bwcc29=1.3<BR>floating
point<BR>0<BR>-4 to 4 octaves<BR>eq1_gain<BR>eq2_gain<BR>eq3_gain<BR>Gain of the
equalizer band, in decibels.<BR>Examples:<BR>eq1_gain=-3 eq2_gain=6
eq3_gain=-6<BR>floating point<BR>0 dB<BR>-96 to 24
dB<BR>eq1_gainccN<BR>eq2_gainccN<BR>eq3_gainccN<BR>Gain change of the equalizer
band when MIDI continuous control N messages are received,<BR>in
decibels.<BR>Examples:<BR>eq1_gaincc23=-12<BR>floating point<BR>0 dB<BR>-96 to
24 dB<BR>eq1_vel2gain<BR>eq2_vel2gain<BR>eq3_vel2gain<BR>Gain change of the
equalizer band with MIDI velocity, in
decibels.<BR>Examples:<BR>eq1_vel2gain=12<BR>floating point<BR>0<BR>-96 to 24
dB<BR>Effects<BR>effect1<BR>Level of effect1 send, in percentage (reverb in
sfz).<BR>Examples:<BR>effect1=100<BR>floating point<BR>0<BR>0 to 100
%<BR>effect2<BR>Level of effect2 send, in percentage (chorus in
sfz).<BR>Examples:<BR>effect2=100<BR>floating point<BR>0<BR>0 to 100
%<BR>Examples<BR>Example .sfz definition files showing every opcode
functionality can be found at:<BR><A
href="http://www.rgcaudio.com/sfzsamples/">http://www.rgcaudio.com/sfzsamples/</A><BR>Copyright
© 2004 rgc:audio Software. All rights reserved.<BR>All specifications and prices
specified on this web site may be subject to change<BR>without
notice.<BR></FONT></DIV>
<DIV><FONT size=2 face=Arial></FONT> </DIV>
<BLOCKQUOTE
style="BORDER-LEFT: #000000 2px solid; PADDING-LEFT: 5px; PADDING-RIGHT: 0px; MARGIN-LEFT: 5px; MARGIN-RIGHT: 0px">
<DIV style="FONT: 10pt arial">----- Original Message ----- </DIV>
<DIV
style="FONT: 10pt arial; BACKGROUND: #e4e4e4; font-color: black"><B>From:</B>
<A title=goldfingas@gmail.com href="mailto:goldfingas@gmail.com">Goldfinga
Productions</A> </DIV>
<DIV style="FONT: 10pt arial"><B>To:</B> <A title=rwp@reaaccess.com
href="mailto:rwp@reaaccess.com">Reapers Without Peepers</A> </DIV>
<DIV style="FONT: 10pt arial"><B>Sent:</B> Saturday, August 10, 2013 6:02
PM</DIV>
<DIV style="FONT: 10pt arial"><B>Subject:</B> Re: [RWP] poise</DIV>
<DIV><BR></DIV>Ok, and loading sounds is done how? Let me play with it and see
if it works for me.<BR><BR><BR>On Aug 10, 2013, at 6:50 PM, "Chris Belle"
<<A href="mailto:cb1963@sbcglobal.net">cb1963@sbcglobal.net</A>>
wrote:<BR><BR>> Vst.<BR>> <BR>> ----- Original Message
-----<BR>> From: Goldfinga Productions<BR>> To: Reapers Without
Peepers<BR>> Sent: Saturday, August 10, 2013 5:33 PM<BR>> Subject: Re:
[RWP] poise<BR>> <BR>> I believe I have it, I don't know how you would
go about using it and reaper though. I guess you have to use the standalone
version, and rewire it through reaper?<BR>> What's the best way to harness
SFV and reaper together?<BR>> <BR>> On Aug 10, 2013, at 5:52 PM, "Chris
Belle" <<A href="mailto:cb1963@sbcglobal.net">cb1963@sbcglobal.net</A>>
wrote:<BR>> <BR>> > Hey you guys don't forget about sfz while we're
waiting for shannon to help, it's already very accessible, learn a few opcodes
and you can play samples just the way you like.<BR>> > <BR>>
> There are only about 8 controls on the interface that need to be spotted
and I think someone else has already done done an ahk for it, I did one for
sonar,<BR>> > but jsonar and ct already support it.<BR>> >
<BR>> > I like sfz for instance if I want to assign several keys so I
can do a snare roll convincingly, I can,<BR>> > or layer multiple
samples on one key, or have a high-hat pinch off with an off_by group value I
can, it's really the bomb.<BR>> > <BR>> > I've been
constructing instruments with it for years.<BR>> > And it's
free.<BR>> > <BR>> > <BR>> > <BR>>
> <BR>> > ----- Original Message -----<BR>> > From:
Goldfinga Productions<BR>> > To: Reapers Without Peepers<BR>> >
Sent: Saturday, August 10, 2013 10:45 AM<BR>> > Subject: Re: [RWP]
poise<BR>> > <BR>> > And to add to what Kevin said,poise Will
allow you to group paths together so not only can you have eight litters per
pad, but you can trigger multiple pads at once. you can also do that with
sonar and the matrix. But it's a really cool feature to have.<BR>> >
They're both really cool sample players. But I would prefer to use
poise<BR>> > <BR>> > I hope Shannon is able to do something with
it. I think it's going to unlock a lot of potential, at least in my
studio.<BR>> > <BR>> > <BR>> > On Aug 10, 2013, at 2:54 AM,
Kevin Reeves <<A
href="mailto:lists@kevinreeves.net">lists@kevinreeves.net</A>>
wrote:<BR>> > <BR>> > > For the record, poise and matrix view
are complete apples and oranges.<BR>> > > <BR>> > > Poise
lets you put 8 layers of drums on each pad, allow for round robbin sample
playback, pan, env, volume, etc.<BR>> > > <BR>> > > Matrix
view just lets you trigger samples and other items in Sonar.<BR>> > >
<BR>> > > While this is powerful in and of itself, poise gives you
that MPC like environment you need for creating beats.<BR>> > >
<BR>> > > Hope this helps.<BR>> > > <BR>> > >
Kevin<BR>> > > <BR>> > >
_______________________________________________<BR>> > > RWP mailing
list<BR>> > > <A
href="mailto:RWP@reaaccess.com">RWP@reaaccess.com</A><BR>> > > <A
href="http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com">http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com</A><BR>>
> <BR>> > <BR>> > GF<BR>> > <BR>> > Check me out on
twitter<BR>> > <A
href="http://www.twitter.com/goldfingas">http://www.twitter.com/goldfingas</A><BR>>
> <BR>> > <BR>> > <BR>> >
_______________________________________________<BR>> > RWP mailing
list<BR>> > <A
href="mailto:RWP@reaaccess.com">RWP@reaaccess.com</A><BR>> > <A
href="http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com">http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com</A><BR>>
> _______________________________________________<BR>> > RWP mailing
list<BR>> > <A
href="mailto:RWP@reaaccess.com">RWP@reaaccess.com</A><BR>> > <A
href="http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com">http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com</A><BR>>
<BR>> <BR>> GF<BR>> <BR>> Check me out on twitter<BR>> <A
href="http://www.twitter.com/goldfingas">http://www.twitter.com/goldfingas</A><BR>>
<BR>> <BR>> <BR>>
_______________________________________________<BR>> RWP mailing
list<BR>> <A href="mailto:RWP@reaaccess.com">RWP@reaaccess.com</A><BR>>
<A
href="http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com">http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com</A><BR>>
_______________________________________________<BR>> RWP mailing
list<BR>> <A href="mailto:RWP@reaaccess.com">RWP@reaaccess.com</A><BR>>
<A
href="http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com">http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com</A><BR><BR><BR>GF<BR><BR>Check
me out on twitter<BR><A
href="http://www.twitter.com/goldfingas">http://www.twitter.com/goldfingas</A><BR><BR><BR><BR>_______________________________________________<BR>RWP
mailing list<BR><A href="mailto:RWP@reaaccess.com">RWP@reaaccess.com</A><BR><A
href="http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com">http://reaaccess.com/mailman/listinfo/rwp_reaaccess.com</A></BLOCKQUOTE></BODY></HTML>