

DECtalk® Software

Reference Guide

April 2001

This guide provides reference descriptions of the DECtalk® Software API functions and in-line
commands, followed by a guide to using the in-line commands. It also provides reference tables for
phonemic symbols, stress and syntactic symbols, tones, and homographs; a guide to customizing
DECtalk voices; and a guide to the DECtalk preprocessor’s rules for parsing text.

Revision / Update
Information:

This document supersedes the DECtalk Software Reference Guide,
Version 4.6.

Operating System: Microsoft Windows 95/98/ME/NT/2000
Windows CE/Pocket PC
Red Hat Linux Version 5.0 or higher
Compaq Tru64 UNIX Version 4.x

Software Version: DECtalk Software Version 4.61

ii

April 2001

The information in this publication is subject to change without notice. Force Computers, Inc.
reserves the right to make changes without notice to this, or any of its products, to improve
reliability, performance, or design.

FORCE COMPUTERS, INC. SHALL NOT BE LIABLE FOR TECHNICAL OR EDITORIAL
ERRORS OR OMISSIONS CONTAINED HERIN, NOR FOR INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL. THIS INFORMATION IS PROVIDED “AS IS”
AND FORCE COMPUTERS, INC. EXPRESSLY DISCLAIM ANY AND ALL WARRANTIES,
EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING WITHOUT LIMITATION,
ANY EXPRESS, STATUTORY, OR IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

This publication contains information protected by copyright. This publication shall not be
reproduced, transmitted, or stored in a retrieval system, nor its contents used for any purpose,
without the prior written consent of Force Computers, Inc.

Force Computers, Inc. assumes no responsibility for the use of any circuitry other than the circuitry
that is part of a product of Force Computers, Inc. Force Computers, Inc. does not convey to the
purchaser of the product described herein any license under the patent rights of Force Computers,
Inc. nor the rights of others.

The software described in this guide is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms of the
agreement.

Copyright © 2000, 2001 by Force Computers, Inc. Certain portions © 1997, 1998, 1999 Compaq
Computer Corporation. All rights reserved.

The Force logo and DECtalk are trademarks of Force Computers, Inc.

Compaq is a registered trademark of Compaq Computer Corporation. Tru64 is a trademark of
Compaq Information Technologies Group, L.P.
Intel is a trademark of Intel Corporation.
Linux is a registered trademark of Linus Torvalds.
Microsoft, Windows, Windows 95, Windows 98, Windows ME, Windows NT, Windows 2000, and
Windows CE are registered trademarks of Microsoft Corporation.
Motif is a registered trademark of the Open Software Foundation, Inc.
Red Hat is a registered trademark of Red Hat Software, Inc.
SoundBlaster is a registered trademark of Creative Labs, Inc.
UNIX and The Open Group are trademarks of The Open Group.

Other product names mentioned herein may be trademarks and/or registered trademarks of their
respective companies.

 iii

Contents

Chapter 1 — DECtalk Software API Functions..1-1

TextToSpeechAddBuffer()..1-3

TextToSpeechCloseInMemory() ..1-5

TextToSpeechCloseLang()...1-6

TextToSpeechCloseLogFile()...1-7

TextToSpeechCloseWaveOutFile()..1-8

TextToSpeechEnumLangs()...1-9

TextToSpeechGetCaps()...1-10

TextToSpeechGetFeatures() ..1-11

TextToSpeechGetLanguage() [not supported] ..1-12

TextToSpeechGetRate()..1-13

TextToSpeechGetSpeaker() ...1-14

TextToSpeechGetStatus() ..1-15

TextToSpeechLoadUserDictionary() ...1-16

TextToSpeechOpenInMemory()...1-17

TextToSpeechOpenLogFile() ...1-19

TextToSpeechOpenWaveOutFile()..1-21

TextToSpeechPause()...1-23

TextToSpeechReset()..1-25

TextToSpeechResume() ...1-27

TextToSpeechReturnBuffer() ...1-28

TextToSpeechSelectLang() ..1-29

TextToSpeechSetLanguage() [not supported]...1-30

TextToSpeechSetRate() ..1-31

TextToSpeechSetSpeaker()..1-32

 iv

TextToSpeechShutdown().. 1-33

TextToSpeechSpeak()... 1-34

TextToSpeechStartLang() .. 1-36

TextToSpeechStartup() [Windows] ... 1-38

TextToSpeechStartup() [Linux and UNIX] .. 1-41

TextToSpeechStartupEx() .. 1-44

TextToSpeechSync()... 1-47

TextToSpeechTyping() ... 1-48

TextToSpeechUnloadUserDictionary() ... 1-49

TextToSpeechVersion() .. 1-50

TextToSpeechVersionEx().. 1-51

Chapter 2 — DECtalk Software In-Line Commands.................................2-1

In-Line Commands: Overview ... 2-1

Comma Pause [:comma] .. 2-4

Design Voice [:dv] ... 2-5

Dial Tones [:dial].. 2-6

Error [:error] ... 2-7

Index Mark [:index mark] .. 2-8

Log [:log].. 2-9

Mode [:mode]... 2-10

Name [:name]... 2-15

Period Pause [:period].. 2-16

Phoneme Interpretation [:phoneme]... 2-17

Pitch [:pitch]... 2-19

Play Wave Files [:play].. 2-20

Pronounce [:pronounce] .. 2-21

Punctuation [:punct] ... 2-22

Rate Selection [:rate]... 2-23

 v

Say [:say]..2-24

Skip [:skip] ...2-25

Sync [:sync] ...2-26

Tone [:tone]..2-27

Volume [:volume] ..2-28
Monaural Volume Control ...2-28
Stereo Volume Control..2-28

Chapter 3 — Using In-Line Commands..3-1

Changing Rhythm, Stress, and Intonation ...3-2

Developing an Electronic Mail-Reading Application...3-2

Optimizing the Quality of Spoken Text...3-4

Index Marks for Speech Status..3-5

Speaking Rate..3-6

Adjusting Period and Comma Pause Durations..3-7

Text-Tuning Example..3-8
Original Version...3-8
Revised Version..3-9

Avoiding Common Errors ..3-10

Chapter 4 — DECtalk Software Reference Tables....................................4-1

Phonemic Symbols Listed By Language ...4-2

Stress and Syntactic Symbols...4-16

Phonemes Listed in Unicode Sequence...4-17

Pitch and Duration of Tones ..4-21

Homographs ..4-23

Supported SAPI Functions (Windows 95/98/ME/NT/2000 Only)4-31

Supported SAPI Version 5 Features (Windows 98/ME/NT/2000 Only)4-33

Chapter 5 — Customizing a DECtalk Software Voice5-1

 vi

Design Voice [:dv] ... 5-2

Definitions of DECtalk Software Voices.. 5-4

Changing Gender and Head Size .. 5-5
Sex, sx.. 5-5
Head Size, hs ... 5-6
Higher Formants, f4, f5, b4, and b5.. 5-6

Changing Voice Quality.. 5-8
Breathiness, br.. 5-8
Lax Breathiness, lx ... 5-8
Smoothness, sm... 5-9
Richness, ri ... 5-9
Nopen Fixed, nf .. 5-9
Laryngealization, la ... 5-10

Changing Pitch and Intonation.. 5-11
Baseline Fall, bf .. 5-11
Hat Rise, hr... 5-12
Stress Rise, sr .. 5-12
Assertiveness, as.. 5-13
Quickness, qu... 5-13
Average Pitch, ap, and Pitch Range, pr.. 5-13

Changing Relative Gains and Avoiding Overloads... 5-15
Loudness, g5 .. 5-15
Sound Source Gains, gv, gh, gf, and gn... 5-16
Cascade Vocal Tract Gains, g1, g2, g3, and g4... 5-16

Saving Changes as Val’s Voice ... 5-18
Save, save.. 5-18

Summary of Des ign Voice Options... 5-19

Chapter 6 — Preprocessor Rules for Parsing...6-1

Email Parsing Rules.. 6-1

Punctuation Parsing Rules .. 6-2
Interpreting Punctuation Marks as Words .. 6-2
Interpreting Punctuation Marks as Punctuation.. 6-2

General Parsing Rules.. 6-3
German... 6-3
Spanish (Castilian and Latin American).. 6-3

 vii

English (UK)..6-4
English (US, UK)...6-4

Glossary.. 1

Index.. 1

Figures
Figure 4-1 DECtalk Software Singing “Happy Birthday”..4-21

Tables
Table 1-1 DECtalk Software API Functions...1-1
Table 2-1 DECtalk Software In-Line Commands...2-2
Table 2-2 DECtalk Interpretation of Special Characters..2-11
Table 4-1 Phonemic Symbols - U.S. English..4-3
Table 4-2 Phonemic Symbols - U.K. English..4-6
Table 4-3 Phonemic Symbols - Castilian Spanish..4-8
Table 4-4 Phonemic Symbols - Latin American Spanish ...4-10
Table 4-5 Phonemic Symbols - German ..4-12
Table 4-6 Phonemic Symbols - French ..4-14
Table 4-7 Stress Symbols ...4-16
Table 4-8 Syntactic Symbols ...4-16
Table 4-9 U.S. English Phonemes in Unicode Sequence ...4-17
Table 4-10 Phoneme Syntax for Singing...4-21
Table 4-11 Tone Table ..4-22
Table 4-12 Homograph Phonetics - (A)...4-24
Table 4-13 Homograph Phonetics - (B-C) ...4-25
Table 4-14 Homograph Phonetics - (D-G)...4-26
Table 4-15 Homograph Phonetics - (I-L) ...4-27
Table 4-16 Homograph Phonetics - (M-P)...4-28
Table 4-17 Homograph Phonetics - (R)...4-29
Table 4-18 Homograph Phonetics - (S-W) ..4-30
Table 4-19 Supported Functions of the Microsoft Speech API..4-31
Table 4-20 Supported Features of the Microsoft Speech API, Version 5....................................4-33
Table 5-1 [:dv] Command Options...5-2
Table 5-2 Speaker Definitions for All DECtalk Software Voices ..5-4

 viii

Table 5-3 Head Size and Shape Options.. 5-5
Table 5-4 Voice Quality Options.. 5-8
Table 5-5 Fundamental Frequency Contour Options.. 5-11
Table 5-6 Internal Resonator Options ... 5-15

 ix

Preface

Purpose and Audience
This guide is written for the general user or programmer who wants a ready
reference to DECtalk® Software Application Programming Interface (API)
functions, in-line commands, and reference tables. The information in this guide is
accurate for Windows 95/98/ME/NT/2000, Windows CE/Pocket PC, Linux, and
Tru64 UNIX implementations of DECtalk Software. Use this guide in conjunction
with the DECtalk Software Programmer’s Guide.

Structure
The design of this guide gives you quick and easy access to information. Its
organization can help you easily learn about new topics and perform specific tasks
related to the use of the applets for development of a DECtalk Software application.

The guide is organized as follows:

Chapter 1 DECtalk Software API Functions

Chapter 2 DECtalk Software In-Line Commands

Chapter 3 Using In-Line Commands

Chapter 4 DECtalk Software Reference Tables

Chapter 5 Customizing a DECtalk Software Voice

Chapter 6 Preprocessor Rules for Parsing

Glossary Definitions of Terms Used in DECtalk Documentation

What’s New in DECtalk Software V4.61?
DECtalk Software V4.61 contains the following new features:

• Windows CE support extended to palm-size PCs and pocket PCs.

• Installation tested on Windows ME.

• Reduced footprint sizes for all platforms.

• Unified phoneme set for all supported languages, allowing you to specify
phonemes from different languages within the context of your current language.

• Support for Version 5.0 of the Microsoft Speech API (SAPI) on Windows 98,
Windows ME, Windows NT, and Windows 2000 platforms.

x

• Beta support for the French language.

• Enhanced German.

• Supplemental foreign-language dictionary for German, allowing you to include
foreign phrases in German speech.

• Addition of a Hebrew complement phoneme set.

• Support for Windows CE Agent, an automatic registry update application for
Windows CE developers.

What’s New in DECtalk Software V4.6?
DECtalk Software V4.6 contains the following new features:

• Installation tested on Windows 98 and Windows 2000.

• Support for Linux.

• Support for the German language.

• Disabled license error pop-up window from the DECtalk Software API (DAPI)
engine.

• Significantly increased compliance with the Microsoft Speech API (SAPI); see
APPENDIX3.TXT.

• Enhanced Latin American and Castilian Spanish.

• Windows CE support, which includes a static version of windic.exe that
allows the Windows host to support a user-defined dictionary, and full registry
support.

• Y2K compliance.

• Over 170 bugs fixed, including the following:

q Various application or system hangs or crashes caused by data path,
synchronization, and dictionary failures corrected.

q User dictionary compiler failures corrected.
q Wave file headers corrected.
q Use of extended ASCII characters corrected.
q New in-line command Say filtered-letter added.
q Number processing changes automatically by language.
q Memory leaks corrected.
q Main dictionary wordclass and function words added.
q Word and number stressing corrected.

 xi

q Diphthong, phoneme, homograph, and allophone processing corrected.

xii

Conventions
The following conventions are used in this guide:

Convention Meaning

enter Enter means type the required information and press the Enter key.

mouse Mouse refers to any pointing device, such as a mouse, a puck, or a stylus.

MB1 MB1 indicates the left mouse button.

click Click means press and release MB1.

Double click Double click means to press and release MB1 twice in rapid succession without
moving the mouse.

drag The phrase drag means to press and hold MB1, move the mouse, and then
release MB1 when the pointer is in the desired position.

Ctrl/x Press the Ctrl key while you press another key.

Menu ÍCommand The right arrow key indicates an abbreviated instruction for choosing a
command from a menu. For example, File ÍExit means pull down the File
menu, move the pointer to the Exit command, and release MB1.

Courier type Courier type indicates text that is typed or displayed on the screen. This is
most often used for program code examples.

User Input Boldface type in interactive examples indicates information you enter from the
keyboard. For example:
A:>SETUP

XX YY and
XXn YYn

In DECtalk Software in-line command syntax, XX and YY indicate options and
parameters. When more than one choice of options or parameters is allowed, the
symbol XXn or YYn with n replaced by a numeral indicates each option or
parameter in the symbolic representations, such as [:phoneme XX1 XX2 YY].
Note that the number of characters in the symbolic representation does NOT
represent the number of characters allowed in the actual option or parameter
name.

DD and DDn In DECtalk Software in-line command syntax, DD indicates a decimal (base 10)
value. When more than one decimal values are allowed, the symbol DDn with n
replaced by a numeral represents each allowed value, such as [:volume XX
DD1 DD2]. Note that the number of characters in the symbolic representation
does NOT represent the number of characters allowed in the actual decimal
value.

Conventions used in API functions

Italics Italic text emphasizes important information.

Unless you are instructed otherwise, press Enter after you type responses to
command prompts.

 1-1

Chapter 1 —
DECtalk Software API Functions

This chapter is an alphabetical listing of the DECtalk Software Application
Programming Interface (API) functions.

Table 1-1 DECtalk Software API Functions

TextToSpeechAddBuffer()

TextToSpeechCloseInMemory()

TextToSpeechCloseLang()

TextToSpeechCloseLogFile()

TextToSpeechCloseWaveOutFile()

TextToSpeechEnumLangs()

TextToSpeechGetCaps()

TextToSpeechGetFeatures()

TextToSpeechGetLanguage() [not supported]

TextToSpeechGetRate()

TextToSpeechGetSpeaker()

TextToSpeechGetStatus()

TextToSpeechLoadUserDictionary()

TextToSpeechOpenInMemory()

TextToSpeechOpenLogFile()

TextToSpeechOpenWaveOutFile()

TextToSpeechPause()

TextToSpeechReset()

TextToSpeechResume()

TextToSpeechReturnBuffer()

TextToSpeechSelectLang()

1-2

TextToSpeechSetLanguage() [not supported]

TextToSpeechSetRate()

TextToSpeechSetSpeaker()

TextToSpeechShutdown()

TextToSpeechSpeak()

TextToSpeechStartLang()

TextToSpeechStartup()

TextToSpeechStartupEx()

TextToSpeechSync()

TextToSpeechTyping()

TextToSpeechUnloadUserDictionary()

TextToSpeechVersion()

TextToSpeechVersionEx()

The following formats are not supported in any TextToSpeech…() function call,
because of a limitation in the Windows CE operating system:

• WAVE FORMAT 1M16

• WAVE FORMAT 08M08

 1-3

TextToSpeechAddBuffer()

The TextToSpeechAddBuffer() function supplies a memory buffer to the text-to-
speech system. This memory buffer stores speech samples while DECtalk is in the
speech-to-memory mode.

Syntax MMRESULT TextToSpeechAddBuffer (LPTTS_HANDLE_T phTTS,
 LPTTS_BUFFER_T pTTSbuffer)

Parameters LPTTS_HANDLE_T phTTS Specifies an opened text-to-speech handle.

 LPTTS_BUFFER_T pTTSbuffer Points to a structure containing the memory buffers.
Buffers are supplied by the application to be used while
in speech-to-memory mode.

Return Value This function returns a value of type MMRESULT. The return value is zero if the call is successful.
The return value is one of the following constants:

Constant Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR_INVALPARAM Invalid parameter.

MMSYSERR_ERROR Output to memory not enabled or unable to create a
system object.

MMSYSERR_INVALHANDLE The text-to-speech handle was invalid.

Comments The application must call TextToSpeechOpenInMemory() before calling
TextToSpeechAddBuffer(). The memory buffer is passed using the TTS_BUFFER_T structure.
The user must allocate the structure and its associated elements (memory buffer, phoneme array,
and index mark array). Refer to Speech-To-Memory Mode in the DECtalk Software Programmer’s
Guide for more information on the TTS_BUFFER_T structure and its elements.

 The text-to-speech system returns the buffer to the application when the memory buffer, phoneme
array, or index mark array is full or when a TTS_FORCE was used in the TextToSpeechSpeak()
call. Refer to Callback Routines and Window Procedures in the DECtalk Software Programmer’s
Guide for detailed information on passing information back to the calling application.

1-4

See Also Callback Routines and Window Procedures (DECtalk Software Programmer’s Guide)

 Speech-to-Memory Mode (DECtalk Software Programmer’s Guide)

 TextToSpeechOpenInMemory()

 TextToSpeechReturnBuffer()

 TextToSpeechStartup()

 TextToSpeechStartupEx()

 1-5

TextToSpeechCloseInMemory()

The TextToSpeechCloseInMemory() function terminates the speech-to-memory
capability and returns to the startup state. The speech samples are then ignored or
sent to an audio device, depending on the setting of the dwDeviceOptions parameter
in the startup function.

Syntax MMRESULT TextToSpeechCloseInMemory (LPTTS_HANDLE_T phTTS)

Parameters LPTTS_HANDLE_T phTTS Specifies an opened text-to-speech handle.

Return Value This function returns a value of type MMRESULT. The return value is zero if the call is successful.
The return value is one of the following constants:

Constant Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR_ERROR Output to memory not enabled or unable to create a
system object.

MMSYSERR_INVALHANDLE The text-to-speech handle was invalid.

Comments TextToSpeechOpenInMemory() must be called before calling TextToSpeechCloseInMemory().

See Also TextToSpeechOpenInMemory()

1-6

TextToSpeechCloseLang()

The TextToSpeechCloseLang() function closes an instance for an installed
language and attempts to unload it from the DECtalk Multi-Language (ML) engine.

Syntax BOOL TextToSpeechCloseLang (char *lang)

Parameters char *lang Specifies the language being unloaded; passed as a null-terminated string
containing the 2-character language ID.

Return Value BOOL Returns TRUE when a language is successfully unloaded, or FALSE when the
operation cannot be completed or more instances have the thread started.

Comments Call this function for each thread using the selected language. When a thread returns TRUE, the
language is freed and can be uninstalled or upgraded.

 A return value of FALSE may indicate invalid passing of the lang variable or more instances of the
language still loaded. If there are more instances, the function frees the current instance and returns
FALSE. After calling TextToSpeechCloseLang(), assume that the language handle is no longer
valid.

Example
BOOL stop_us (void) {
 if (TextToSpeechCloseLang (“us”) == FALSE) {
 printf (“Another thread has the language\n”) ;
 printf (“still loaded. \n”) ;
 return FALSE ;
 }
 printf (“The language has been freed. \n”) ;
 return TRUE ;
}

See Also TextToSpeechEnumLangs()

 TextToSpeechSelectLang()

 TextToSpeechStartLang()

 1-7

TextToSpeechCloseLogFile()

The TextToSpeechCloseLogFile() function closes a log file opened by the
TextToSpeechOpenLogFile() function and returns to the startup state. The speech
samples are then ignored or sent to an audio device, depending on the setting of the
dwDeviceOptions parameter in the startup function.

Syntax MMRESULT TextToSpeechCloseLogFile (LPTTS_HANDLE_T phTTS)

Parameters LPTTS_HANDLE_T phTTS Specifies an opened text-to-speech handle.

Return Value This function returns a value of type MMRESULT. The return value is zero if the call is successful.
The return value is one of the following constants.

Constants Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR_ERROR Failure to wait for pending speech, unable to close the
output file, or no output file is open.

MMSYSERR_INVALHANDLE The text-to-speech handle was invalid.

Comments TextToSpeechCloseLogFile() closes any open log file, even if it was opened with the Log
command.

 The application must have called TextToSpeechOpenLogFile() before calling
TextToSpeechCloseLogFile().

See Also TextToSpeechOpenLogFile()

1-8

TextToSpeechCloseWaveOutFile()

The TextToSpeechCloseWaveOutFile() function closes a wave file opened by the
TextToSpeechOpenWaveOutFile() function and returns to the startup state. The
speech samples are then ignored or sent to an audio device, depending on the setting
of the dwDeviceOptions parameter in the startup function.

Syntax MMRESULT TextToSpeechCloseWaveOutFile (LPTTS_HANDLE_T phTTS)

Parameters LPTTS_HANDLE_T phTTS Specifies an opened text-to-speech handle.

Return Value This function returns a value of type MMRESULT. The return value is zero if the call is successful.
The return value is one of the following constants:

Constant Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR_ERROR Failure to wait for pending speech, unable to update the
wave file header, or unable to close the wave file.

MMSYSERR_INVALHANDLE The text-to-speech handle was invalid.

Comments The application must call TextToSpeechOpenWaveOutFile() before calling
TextToSpeechCloseWaveOutFile().

See Also TextToSpeechOpenWaveOutFile()

 1-9

TextToSpeechEnumLangs()

The TextToSpeechEnumLangs() function retrieves information about what
languages are available in the system.

Syntax DWORD TextToSpeechEnumLangs (LPLANG_ENUM *langs);

Parameters LPLANG_ENUM *langs Specifies a LANG_ENUM struct structure to be used to return the
language information.

Return Value DWORD Returns the size of the struct on success, or 0 on error. No further
error information is available at this time.

Comments TextToSpeechEnumLangs() returns the default language in the registry as the first language of the
array of LANG_ENTRY returned by the langs parameter.

Example
if(TextToSpeechEnumLangs (&languageINFO) == 0)
{
 MessageBox(NULL, “Unable to allocate Memory”,”Error”,MB_OK);
 return(-1);
}
…
…
if(languageINFO->MultiLang==FALSE)
 /* perform nonML processing */
else
 for(i=0;i<languageINFO->Languages;i++)//go through all languages…
{
 languageINFO->Entries[i].lang_code; //short language name
 languageINFO->Entries[i].lang_name //long language name
}

See Also TextToSpeechCloseLang()

 TextToSpeechSelectLang()

 TextToSpeechStartLang()

1-10

TextToSpeechGetCaps()

The TextToSpeechGetCaps() function lists the current capabilities of the DECtalk
Software by filling in the structure of type TTS_CAPS_T. The caller must have
space allocated for this structure before calling TextToSpeechGetCaps().

Syntax MMRESULT TextToSpeechGetCaps (LPTTS_CAPS_T lpTTScaps)

Parameters LPTTS_CAPS_T lpTTScaps Specifies a pointer to a structure of type TTS_CAPS_T.
This structure returns the capabilities of the text-to-
speech system.

Return Value This function returns a value of type MMRESULT. The return value is zero if the call is successful.
The return value is one of the following constants.

Constant Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR_INVALHANDLE The text-to-speech handle was invalid.

MMSYSERR_ERROR The pointer to the TTS_CAPS_T structure was invalid.

Comments Information returned in the TTS_CAPS_T structure includes languages, proper name pronunciation
support, sample rate, minimum and maximum speaking rate, number of predefined speaking voices,
character-set supported, and version number. See the DECtalk Software Programmer’s Guide for
more information on the TTS_CAPS_T structure.

 1-11

TextToSpeechGetFeatures()

The TextToSpeechGetFeatures() function retrieves information, in the form of a
bitmask, about the features of DECtalk Software.

Syntax DWORD TextToSpeechGetFeatures (void) ;

Parameters void

Return Value DWORD A bitmask of features supported by DECtalk, maskable to the list supplied
in the header file TTSFEAT.H.

Comments If the DECtalk Multi-Language (ML) engine is running, the ML bit is set to TRUE, as well as any
feature bits returned from DECtalk.

Future implementation may involve calling TextToSpeechSelectLang() to select the language for
which to retrieve information.

Example
BOOL is_dectalk_ml (unsigned int language_handle) {
 unsigned long int feats ;

 TextToSpeechSelectLang (NULL, language_handle) ;
 feats = TextToSpeechGetFeatures() ;
 if (feats & TTS_FEATS_MULTILANG) {;
 printf (“DECtalk ML installed and running. \n”) ;
 return TRUE ;
 }
 printf (“Multi-language DECtalk not found. \n”) ;
 return FALSE ;
}

1-12

TextToSpeechGetLanguage() [not supported]

Warning

The TextToSpeechGetLanguage() function is not supported for DECtalk Software
Version 4.5 or higher. Use of this function causes unpredictable operation and
application linking errors.

This function has been replaced by TextToSpeechGetCaps().

 The TextToSpeechGetLanguage() function returns the current language.

Syntax MMRESULT TextToSpeechGetLanguage (LPTTS_HANDLE_T phTTS,

 LANGUAGE_T *pLanguage)

Parameters LPTTS_HANDLE_T phTTS Specifies a text-to-speech handle.

 LANGUAGE_T *pLanguage Specifies a language. Refer to the ttsapi.h file for a

list of valid languages, e.g. TTS_AMERICAN_ENGLISH.

Return Value This function returns a value of type MMRESULT. The value is zero if the call is successful. The

return value is one of the following constants:

 Constant Description
 MMSYSERR_NOERROR Normal successful completion (zero).
 MMSYSERR_INVALHANDLE The text-to-speech handle was invalid.

See Also TextToSpeechSetLanguage()

 1-13

TextToSpeechGetRate()

The TextToSpeechGetRate() function returns the current setting of the speaking
rate.

Syntax MMRESULT TextToSpeechGetRate (LPTTS_HANDLE_T phTTS,
 LPDWORD pdwRate)

Parameters LPTTS_HANDLE_T phTTS Specifies an opened text-to-speech handle.

 LPDWORD pdwRate Specifies a pointer to a DWORD that is used to return
the speaking rate. Valid values range from 75 to 600
words per minute.

Return Value This function returns a value of type MMRESULT. The return value is zero if the call is successful.
The return value is one of the following constants:

Constant Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR_INVALHANDLE The text-to-speech handle was invalid.

Comments The current setting of the speaking rate is returned even if the speaking rate change has not yet
occurred. This may occur when the TextToSpeechSetRate() function is used without the
TextToSpeechSync() function. The speaking-rate change occurs on clause boundaries.

See Also TextToSpeechSetRate()

1-14

TextToSpeechGetSpeaker()

The TextToSpeechGetSpeaker() function returns the value of the identifier for the
last voice that has spoken.

Syntax MMRESULT TextToSpeechGetSpeaker (LPTTS_HANDLE_T phTTS,
 LPSPEAKER_T lpSpeaker)

Parameters LPTTS_HANDLE_T phTTS Specifies an opened text-to-speech handle.

 LPSPEAKER_T lpSpeaker Specifies a pointer to a DWORD that returns a speaker
value from the following list. These symbols are defined
in the include file ttsapi.h.

Speaker Description

PAUL Default (male) voice

HARRY Full male voice

FRANK Aged male voice

DENNIS Male voice

BETTY Full female voice

URSULA Aged female voice

WENDY Whispering female voice

RITA Female voice

KIT Child’s voice

Return Value This function returns a value of type MMRESULT. The return value is zero if the call is successful.
The return value is one of the following constants:

Constant Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR_INVALHANDLE The text-to-speech handle was invalid.

Comments Note that even after calling TextToSpeechSetSpeaker(), TextToSpeechGetSpeaker() returns the
value for the previous speaking voice until the new voice actually speaks.

See Also TextToSpeechSetSpeaker()

 1-15

TextToSpeechGetStatus()

The TextToSpeechGetStatus() function returns the status of one or more text-to-
speech system parameters.

Syntax MMRESULT TextToSpeechGetStatus (LPTTS_HANDLE_T phTTS,
 LPDWORD dwIdentifier[],
 LPDWORD dwStatus[],
 DWORD dwNumberOfStatusValues)

Parameters LPTTS_HANDLE_T phTTS Specifies an opened text-to-speech handle.

 LPDWORD dwIdentifier[] Specifies an array of values of type DWORD that specify
TTS parameters for which status values are to be
returned in the dwStatus array. These values can be any
of the constants defined in include file ttsapi.h and
listed below.

LPDWORD dwStatus[] Specifies an array of type DWORD that is to return
status values corresponding to each of the identifiers in
the dwIdentifier array.

DWORD dwNumberOfStatusValues Specifies the number of entries to return.

Constant in ttsapi.h Description

INPUT_CHARACTER_COUNT Returns a count of characters that the text-to-speech
system is currently processing.

STATUS_SPEAKING The status value is TRUE if audio samples are playing
and FALSE if no audio sample is playing.

WAVE_OUT_DEVICE_ID The current wave output device ID is returned.

Return Value This function returns a value of type MMRESULT. The return value is zero if the call is successful.
The return value is one of the following constants:

Constant Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR_INVALPARAM An invalid parameter was passed.

MMSYSERR_ERROR Error obtaining status values.

MMSYSERR_INVALHANDLE The text-to-speech handle was invalid.

Comments The STATUS_SPEAKING status identifier has no meaning if the application is sending speech to a
wave file or sending speech to memory.

1-16

TextToSpeechLoadUserDictionary()

The TextToSpeechLoadUserDictionary() function loads a user-defined
pronunciation dictionary into the text-to-speech system.

Syntax MMRESULT TextToSpeechLoadUserDictionary (LPTTS_HANDLE_T phTTS,
 LPSTR pszFileName)

Parameters LPTTS_HANDLE_T phTTS Specifies an opened text-to-speech handle.

 LPSTR pszFileName Specifies a pointer to a NULL-terminated string that
specifies the name of the user dictionary file to be
loaded.

Return Value This function returns a value of type MMRESULT. The return value is zero if the call is successful.
The return value is one of the following constants:

Constant Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR_INVALHANDLE The text-to-speech handle was invalid.

MMSYSERR_NOMEM Unable to allocate memory for dictionary.

MMSYSERR_INVALPARAM Dictionary file not found or an invalid dictionary file name.

MMSYSERR_ERROR Illegal dictionary format or a dictionary is already loaded.

Comments This function loads a dictionary created by the windict or userdict applet (Linux or UNIX) or the
windic applet (Windows). Any previously loaded user dictionary must be unloaded before loading a
new user dictionary. Note that the text-to-speech system will automatically load a user dictionary,
user.dic (or udict_langcode.dic for Linux), at startup if it exists in the home directory.

See Also Dictionary Functions (DECtalk Software Programmer’s Guide)

 TextToSpeechUnloadUserDictionary()

 1-17

TextToSpeechOpenInMemory()

The TextToSpeechOpenInMemory() function causes the text-to-speech system to
enter into speech-to-memory mode. This mode indicates that the speech samples are
to be written into memory buffers rather than sent to an audio device each time
TextToSpeechSpeak() is called. TextToSpeechAddBuffer() supplies the text-to-
speech system with the memory buffers that it needs. The text-to-speech system
remains in the speech-to-memory mode until TextToSpeechCloseInMemory() is
called.

Syntax MMRESULT TextToSpeechOpenInMemory (LPTTS_HANDLE_T phTTS,
 DWORD dwFormat)

Parameters LPTTS_HANDLE_T phTTS Specifies an opened text-to-speech handle.

 DWORD dwFormat Specifies an identifier that determines the audio sample
format. It is one of the following constants defined in the
include files mmsystem.h and ttsapi.h.

Constant Description

WAVE_FORMAT_1M08 Mono, 8-bit 11.025 kHz sample rate

WAVE_FORMAT_1M16 Mono, 16-bit 11.025 kHz sample rate

WAVE_FORMAT_08M08 Mono, 8-bit µ-law, 8 kHz sample rate

Return Value This function returns a value of type MMRESULT. The return value is zero if the call is successful.
The return value is one of the following constants:

Constant Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR_INVALPARAM An invalid parameter or illegal wave output format was
passed.

MMSYSERR_NOMEM Unable to allocate memory.

MMSYSERR_ERROR Illegal output state.

MMSYSERR_INVALHANDLE The text-to-speech handle was invalid.

1-18

Comment The text-to-speech system is in the speech-to-memory mode after successfully invoking this
function. The memory buffer is passed using the structure TTS_BUFFER_T. The user must allocate
the structure and its associated elements (memory buffer, phoneme array, and index mark array).
Refer to Speech-To-Memory Mode in the DECtalk Software Programmer’s Guide for more
information on the TTS_BUFFER_T structure and its elements.

 The text-to-speech system returns the buffer to the application when the memory buffer, phoneme
array, or index mark array is full or when a TTS_FORCE was used in the TextToSpeechSpeak()
call. Refer to Callback Routines and Window Procedures in the DECtalk Software Programmer’s
Guide for details on passing information back to the calling application.

 The startup function must be called to start the text-to-speech system before calling
TextToSpeechOpenInMemory().

 TextToSpeechOpenInMemory() automatically resumes audio output if the text-to-speech system is
in a paused state by a previously issued TextToSpeechPause() call.

See Also Callback Routines and Window Procedures (DECtalk Software Programmer’s Guide)

 Speech-to-Memory Mode (DECtalk Software Programmer’s Guide)

 TextToSpeechAddBuffer()

 TextToSpeechCloseInMemory()

 TextToSpeechPause()

 TextToSpeechReset()

 TextToSpeechReturnBuffer()

 TextToSpeechSpeak()

 TextToSpeechStartup()

 TextToSpeechStartupEx()

 1-19

TextToSpeechOpenLogFile()

The TextToSpeechOpenLogFile() function opens the specified log file and causes
the text-to-speech system to enter into the log-file mode. This mode indicates that the
speech samples are to be written as text, phonemes, or syllables into the log file each
time TextToSpeechSpeak() is called. The phonemes and syllables are written using
the arpabet alphabet. The text-to-speech system remains in the log-file mode until
TextToSpeechCloseLogFile() is called.

Syntax MMRESULT TextToSpeechOpenLogFile (LPTTS_HANDLE_T phTTS,
 LPSTR pszFileName,
 DWORD dwFlags)

Parameters LPTTS_HANDLE_T phTTS Specifies an opened text-to-speech handle.

 LPSTR pszFileName Specifies a pointer to a NULL terminated string that
specifies the name of the log file to be opened.

 DWORD dwFlags Specifies the type of output. It can contain one or more
of the following constants:

Constant Description

LOG_TEXT Log text

LOG_PHONEMES Log phonemes

LOG_SYLLABLES Log syllable structure

Return Value This function returns a value of type MMRESULT. The return value is zero if the call is successful.
The return value is one of the following constants:

Constant Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR_INVALPARAM An invalid parameter was passed.

MMSYSERR_NOMEM Unable to allocate memory.

MMSYSERR_ALLOCATED A phoneme file is already open.

MMSYSERR_ERROR Unable to open the output file.

MMSYSERR_INVALHANDLE The text-to-speech handle was invalid.

1-20

Comments If more than one of the dwFlags are passed, the logged output is mixed in an unpredictable fashion. If
a log file is open already, this function returns an error. The Log voice-control command also has no
effect when a log file is open already.

 The startup function must be called to start the text-to-speech system before calling
TextToSpeechOpenLogFile().

 TextToSpeechOpenLogFile() automatically resumes audio output if the text-to-speech system is in
a paused state by a previously issued TextToSpeechPause() call.

See Also Log-File Mode (DECtalk Software Programmer’s Guide)

 TextToSpeechCloseLogFile()

 TextToSpeechPause()

 TextToSpeechReset()

 TextToSpeechSpeak()

 TextToSpeechStartup()

 TextToSpeechStartupEx()

 1-21

TextToSpeechOpenWaveOutFile()

The TextToSpeechOpenWaveOutFile() function opens the specified wave file and
causes the text-to-speech system to enter into wave-file mode. This mode indicates
that the speech samples are to be written in wave format into the wave file each time
TextToSpeechSpeak() is called. The text-to-speech system remains in the wave-file
mode until TextToSpeechCloseWaveOutFile() is called.

Syntax MMRESULT TextToSpeechOpenWaveOutFile (LPTTS_HANDLE_T phTTS,
 LPSTR pszFileName,
 DWORD dwFormat)

Parameters LPTTS_HANDLE_T phTTS Specifies an opened text-to-speech handle.

 LPSTR pszFileName Specifies a pointer to a wave file name.

 DWORD dwFormat Determines the audio sample format. It can be one of the
following constants that are defined in include files
mmsystem.h and ttsapi.h:

Constant Description

WAVE_FORMAT_1M08 Mono, 8-bit 11.025 kHz sample rate

WAVE_FORMAT_1M16 Mono, 16-bit 11.025 kHz sample rate

WAVE_FORMAT_08M08 Mono, 8-bit µ-law, 8 kHz sample rate

Return Value This function returns a value of type MMRESULT. The return value is zero if the call is successful.
The return value is one of the following constants:

Constant Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR_INVALPARAM An invalid parameter or an illegal wave output format
was passed.

MMSYSERR_NOMEM Memory allocation error.

MMSYSERR_ALLOCATED A wave file is already open.

MMSYSERR_ERROR Unable to open the wave file or unable to write to the
wave file.

MMSYSERR_INVALHANDLE The text-to-speech handle was invalid.

Comments This function automatically resumes audio output if the text-to-speech system is in a paused state by
a previously issued TextToSpeechPause() call.

1-22

 The startup function must be called to start the text-to-speech system before calling
TextToSpeechOpenWaveOutFile().

See Also Wave-File Mode (DECtalk Software Programmer’s Guide)

 TextToSpeechCloseWaveOutFile()

 TextToSpeechPause()

 TextToSpeechReset()

 TextToSpeechSpeak()

 TextToSpeechStartup()

 TextToSpeechStartupEx()

 1-23

TextToSpeechPause()

The TextToSpeechPause() function pauses text-to-speech audio output.

Syntax MMRESULT TextToSpeechPause (LPTTS_HANDLE_T phTTS)

Parameters LPTTS_HANDLE_T phTTS Specifies an opened text-to-speech handle.

Return Value This function returns a value of type MMRESULT. The return value is zero if the call is successful.
The return value is one of the following constants:

Constant Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR_INVALHANDLE The specified device handle is invalid. The system is not
speaking or the text-to-speech handle is invalid.

Comments This function affects only the audio output and has no effect when writing log files or wave files, or
when using the speech-to-memory capability of the text-to-speech system.

 If the text-to-speech system owns the audio device (that is, OWN_AUDIO_DEVICE was specified in
the startup function), then the text-to-speech system remains paused until
TextToSpeechResume(), TextToSpeechSync(), TextToSpeechOpenInMemory(),
TextToSpeechOpenLogFile(), or TextToSpeechOpenWaveOutFile() is called.

 If the text-to-speech system does not own the audio device (OWN_AUDIO_DEVICE was NOT
specified in the startup function) and TextToSpeechPause() is called while the system is speaking,
the text-to-speech system remains paused until the system has completed speaking.

 In this case, the wave output device is released when TextToSpeechReset() is called. It will also be
released if TextToSpeechSync(), TextToSpeechOpenInMemory(),
TextToSpeechOpenLogFile(), or TextToSpeechOpenWaveOutFile() is called AND the system
has completed speaking.

 Note that TextToSpeechPause() will NOT resume audio output if the text-to-speech system is
paused by TextToSpeechPause().

1-24

See Also TextToSpeechOpenInMemory()

 TextToSpeechOpenLogFile()

 TextToSpeechOpenWaveOutFile()

 TextToSpeechReset()

 TextToSpeechResume()

 TextToSpeechSpeak()

 TextToSpeechSync()

 1-25

TextToSpeechReset()

The TextToSpeechReset() function flushes all previously queued text from the text-
to-speech system and stops any audio output.

Syntax MMRESULT TextToSpeechReset (LPTTS_HANDLE_T phTTS,
BOOL bReset)

Parameters LPTTS_HANDLE_T phTTS Specifies an opened text-to-speech handle.

 BOOL bReset Specifies one of the following Boolean values:

Value Description

FALSE Preserves the current mode of the text-to-speech
system.

TRUE The text-to-speech system is returned to the startup
state and any open text-to-speech files are closed.
However, this function will NOT resume the text-to-
speech system if it has been paused by the
TextToSpeechPause() function.

Return Value The TextToSpeechReset() function returns a value of type MMRESULT. The return value is zero if
the call is successful. The return value is one of the following constants:

Constant Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR_NOMEM Unable to allocate memory.

MMSYSERR_ERROR Unable to flush the system.

MMSYSERR_INVALHANDLE The text-to-speech handle was invalid.

Comments TextToSpeechReset() flushes all previously queued text and stops all audio output. If the
TextToSpeechOpenInMemory() function has enabled writing speech samples to memory, all
queued memory buffers are returned to the calling application. If the bReset flag is on and the text-
to-speech system is in one of its special modes (log-file, wave-file, or speech-to-memory mode), all
files are closed and the text-to-speech system is returned to the startup state.

 TextToSpeechReset() should be called before calling TextToSpeechCloseInMemory(). Failing to
do this in a situation where the synthesizer is busy may result in a deadlock.

1-26

See Also Special Text-To-Speech Modes (DECtalk Software Programmer’s Guide)

 TextToSpeechOpenInMemory()

 TextToSpeechOpenLogFile()

 TextToSpeechOpenWaveOutFile()

 TextToSpeechPause()

 1-27

TextToSpeechResume()

The TextToSpeechResume() function resumes text-to-speech output after it was
paused by calling TextToSpeechPause().

Syntax MMRESULT TextToSpeechResume (LPTTS_HANDLE_T phTTS)

Parameters LPTTS_HANDLE_T phTTS Specifies an opened text-to-speech handle.

Return Value This function returns a value of type MMRESULT. The return value is zero if the call is successful.
The return value is one of the following constants:

Constant Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR_INVALHANDLE The system was not paused or the text-to-speech handle
was invalid.

Comments This function affects only audio output and has no effect when writing log files or wave files or when
writing speech samples to memory.

See Also TextToSpeechPause()

1-28

TextToSpeechReturnBuffer()

The TextToSpeechReturnBuffer() function returns the current buffer when an
application is using the speech-to-memory capability. The buffer can be empty or
partially full when it is returned. The dwBufferLength element of the
TTS_BUFFER_T structure contains the number of samples in the buffer. If no
buffer is available, a NULL pointer is returned in ppTTSbuffer.

Syntax MMRESULT TextToSpeechReturnBuffer (LPTTS_HANDLE_T phTTS,
 LPTTS_BUFFER_T *ppTTSbuffer)

Parameters LPTTS_HANDLE_T phTTS Specifies an opened text-to-speech handle.

 LPTTS_BUFFER_T *ppTTSbuffer Specifies a pointer to a pointer to a structure containing
the memory buffers. Buffers were supplied by the
application to be used while in speech-to-memory mode.

Return Value This function returns a value of type MMRESULT. The return value is zero if the call is successful.
The return value is one of the following constants:

Constant Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR_INVALPARAM Invalid parameter.

MMSYSERR_ERROR Output to memory not enabled or unable to create a
system object.

MMSYSERR_INVALHANDLE The text-to-speech handle was invalid.

Comments Most applications do not require this function, because buffers are automatically returned when filled
or when a TTS_FORCE flag is passed in the TextToSpeechSpeak() function. The
TextToSpeechReturnBuffer() function is provided so that an application can return a buffer before
it is filled and, therefore, obtain more speech samples immediately. See the DECtalk Software
Programmer’s Guide for more information on the TTS_BUFFER_T structure.

TextToSpeechAddBuffer() must be called before calling TextToSpeechReturnBuffer().

See Also TextToSpeechAddBuffer()

 1-29

TextToSpeechSelectLang()

The TextToSpeechSelectLang() function selects a loaded language for a program
thread.

Syntax BOOL TextToSpeechSelectLang (LPTTS_HANDLE_T reserved,
 unsigned int lang)

Parameters LPTTS_HANDLE_T reserved Reserved; must be NULL.

 unsigned int lang Specifies the language handle returned from
TextToSpeechStartLang().

Return Value This function returns a value of type BOOL:

• TRUE if the call is successful

• FALSE if the call failed

Note

The TextToSpeechStartLang() and TextToSpeechSelectLang() functions do not return
MMRESULT status values in the manner of the TextToSpeechSetLanguage() function
they replace. See the example of TextToSpeechSelectLang() error checking provided
below.

Comments None.

Example
BOOL select_us (unsigned int us_handle) {
 if (TextToSpeechSelectLang (NULL, us_handle) == FALSE) {
 printf (“Select language failed. \n”) ;
 return FALSE ;
 }
 return TRUE ;
}

See Also TextToSpeechCloseLang()

 TextToSpeechEnumLangs()

 TextToSpeechStartLang()

1-30

TextToSpeechSetLanguage() [not supported]

Warning

The TextToSpeechSetLanguage() function is not supported for DECtalk Software
Version 4.5 or higher. Use of this function causes unpredictable operation and
application linking errors.

For multi-language programming, use TextToSpeechStartLang() to check for an
installed language and to load that language into the DECtalk Multi-Language (ML)
engine, and use TextToSpeechSelectLang() to select a loaded language for a
program thread.

 The TextToSpeechSetLanguage() function selects a language for the text-to-speech

system to use as the default language.

Syntax MMRESULT TextToSpeechSetLanguage (LPTTS_HANDLE_T phTTS,

 LANGUAGE_T Language)

Parameters LPTTS_HANDLE_T phTTS Specifies a text-to-speech handle.

 LANGUAGE_T Language Specifies a language. Refer to the ttsapi.h file for a list of

valid languages, e.g. TTS_AMERICAN_ENGLISH.

Return Value This function returns a value of type MMRESULT. The value is zero if the call is successful. The

return value is one of the following constants:

 Constant Description
 MMSYSERR_NOERROR Normal successful completion (zero).
 MMSYSERR_INVALPARAM An invalid parameter was passed.
 MMSYSERR_INVALHANDLE The text-to-speech handle was invalid.

See Also TextToSpeechGetLanguage()

 1-31

TextToSpeechSetRate()

The TextToSpeechSetRate() function sets the text-to-speech speaking rate.

Syntax MMRESULT TextToSpeechSetRate (LPTTS_HANDLE_T phTTS,
DWORD dwRate

Parameters LPTTS_HANDLE_T phTTS Specifies an opened text-to-speech handle.

 DWORD dwRate Sets the speaking rate. Valid values range from 75 to
600 words per minute.

Return Value This function returns a value of type MMRESULT. The return value is zero if the call is successful.
The return value is one of the following constants:

Constant Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR_INVALPARAM An invalid parameter was passed.

MMSYSERR_INVALHANDLE The text-to-speech handle was invalid.

Comments The speaking rate change is not effective until the next phrase boundary. All the queued audio
encountered before the phrase boundary is unaffected.

See Also TextToSpeechGetRate()

1-32

TextToSpeechSetSpeaker()

The TextToSpeechSetSpeaker() function sets the voice of the speaker that the text-
to-speech system is to use.

Syntax MMRESULT TextToSpeechSetSpeaker (LPTTS_HANDLE_T phTTS,
 SPEAKER_T Speaker)

Parameters LPTTS_HANDLE_T phTTS Specifies an opened text-to-speech handle.

 SPEAKER_T Speaker Selects a speaker from the following list. These values
are defined in include file ttsapi.h.

Speaker Description

PAUL Default (male) voice

HARRY Full male voice

FRANK Aged male voice

DENNIS Male voice

BETTY Full female voice

URSULA Aged female voice

WENDY Whispering female voice

RITA Female voice

KIT Child’s voice

Return Value This function returns a value of type MMRESULT. The return value is zero if the function is
successful. The return value is one of the following constants:

Constant Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR_INVALPARAM An invalid parameter was passed.

MMSYSERR_INVALHANDLE The text-to-speech handle was invalid.

Comments The change in speaking voice is not effective until the next phrase boundary. All queued audio
encountered before the phrase boundary is unaffected.

See Also TextToSpeechGetSpeaker()

 1-33

TextToSpeechShutdown()

The TextToSpeechShutdown() function shuts down the text-to-speech system and
frees all its system resources.

Syntax MMRESULT TextToSpeechShutdown (LPTTS_HANDLE_T phTTS)

Parameters LPTTS_HANDLE_T phTTS Specifies an opened text-to-speech handle.

Return Value This function returns a value of type MMRESULT. The return value is zero if the call is successful.
The return value is one of the following constants:

Constant Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR_INVALHANDLE The text-to-speech handle was invalid.

Comments TextToSpeechShutdown() is called to close an application. Any user-defined dictionaries that were
previously loaded are unloaded. All previously queued text is discarded, and the text-to-speech
system immediately stops speaking.

See Also TextToSpeechStartup()

 TextToSpeechStartupEx()

1-34

TextToSpeechSpeak()

The TextToSpeechSpeak() function queues a null-terminated string to the text-to-
speech system.

Syntax MMRESULT TextToSpeechSpeak (LPTTS_HANDLE_T phTTS,
LPSTR pszTextString,
DWORD dwFlags)

Parameters LPTTS_HANDLE_T phTTS Specifies an opened text-to-speech handle.

 LPSTR pszTextString Specifies a pointer to a null terminated string of
characters to be queued.

 DWORD dwFlags Specifies whether the text is to be pushed through the
text-to-speech system even if it does NOT end on a
clause boundary. It can be set to one of the following
constants defined in include file ttsapi.h:

Constant Description

TTS_NORMAL Insert characters in the text-to-speech queue.

TTS_FORCE Insert characters in the text-to-speech queue and force
all text to be output even if the text stream does NOT
end on a clause boundary.

Return Values This function returns a value of type MMRESULT. The return value is zero if the call is successful.
The return value is one of the following constants:

Constant Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR _NOMEM Unable to allocate memory.

MMSYSERR_INVALHANDLE The text-to-speech handle was invalid.

Comments While the text-to-speech system is in the startup state, speech samples are routed to the audio
device or ignored, depending on whether the startup function flag DO_NOT_USE_AUDIO_DEVICE
is clear or set in the dwDeviceOptions parameter of the startup function.

If the text-to-speech system is in a special mode (wave-file, log-file, or speech-to-memory modes),
the speech samples are handled as the mode dictates.

The speaker, speaking rate, and volume also can be changed in the text string by inserting voice-
control commands, as shown in the following example:

 [:name paul] I am Paul. [:nb] I am Betty. [:volume set 50] The volume has been set to 50% of the
maximum level. [:rate 120] I am speaking at 120 words per minute.

 1-35

See Also Special Text-To-Speech Modes (DECtalk Software Programmer’s Guide)

 TextToSpeechOpenInMemory()

 TextToSpeechOpenLogFile()

 TextToSpeechOpenWaveOutFile()

 TextToSpeechStartup()

 TextToSpeechStartupEx()

1-36

TextToSpeechStartLang()

The TextToSpeechStartLang() function checks whether the specified language is
installed and, if so, loads the language into the DECtalk ML engine.

Syntax unsigned int TextToSpeechStartLang (char *lang)

Parameters char *lang Specifies the language to load; passed as a null-terminated string containing
the two character language ID.

Return Values This function returns a value of type unsigned int:

• A handle to the loaded language if the call is successful

• An error value, with the TTS_LANG_ERROR bit set, if the call failed

If the TTS_LANG_ERROR bit is set, the return can equal one of two values:

• TTS_NOT_SUPPORTED – The application is not running DECtalk ML

• TTS_NOT_AVAILABLE – The requested language is not installed

Note

The TextToSpeechStartLang() and TextToSpeechSelectLang() functions do not return
MMRESULT status values in the manner of the TextToSpeechSetLanguage() function
they replace. See the example of TextToSpeechStartLang() error checking provided
below.

Comments TextToSpeechStartLang() must be called before a language can be selected and opened in a
multi-language application.

Example
BOOL start_us (void) {
 unsigned int handle ;

 handle = TextToSpeechStartLang (“us”) ;
 if (handle & TTS_LANG_ERROR) {
 if (handle == TTS_NOT_SUPPORTED)
 printf (“DECtalk ML was not found. \n”) ;
 else if (handle == TTS_NOT_AVAILABLE)
 printf (“English is not currently installed.
\n”);
 else
 printf (“An unknown error has occurred. \n”) ;
 return FALSE ;

 1-37

 }
 return TRUE ;
}

See Also TextToSpeechCloseLang()

 TextToSpeechEnumLangs()

 TextToSpeechSelectLang()

1-38

TextToSpeechStartup() [Windows]

The TextToSpeechStartup() function for Windows initializes the text-to-speech
system, defines the window procedure, checks for valid licenses, and loads the main
and user pronunciation dictionaries. A single process can run multiple instances of
DECtalk.

Syntax MMRESULT TextToSpeechStartup (HWND hWnd,
LPTTS_HANDLE_T *phTTS,
UINT uiDeviceNumber,
DWORD dwDeviceOptions)

Parameters HWND hWnd Specifies a handle used to send messages back to the
window procedure. The window handle is used by
DECtalk Software to inform the application when the
buffer is full (if DECtalk Software in-memory functions
are being used) or when TextToSpeechSpeak()
encounters an index mark.

 A value of NULL is passed if no window handle is
desired.

 LPTTS_HANDLE_T *phTTS Specifies a pointer to a pointer to a text-to-speech
handle.

 UINT uiDeviceNumber Specifies the device number of the wave output device.
A value of WAVE_MAPPER can be used to select the
first available device.

 DWORD dwDeviceOptions Specifies how the wave output device is managed. It can
be a combination of the following constants defined in
include file ttsapi.h:

Constant Description

OWN_AUDIO_DEVICE The wave output device is open. No other process can
allocate the wave output device until
TextToSpeechShutdown() is called.

 If OWN_AUDIO_DEVICE is NOT specified, the wave
output device is opened after audio is queued by
TextToSpeechSpeak(). The wave output device is
released when the text-to-speech system has completed
speaking.

REPORT_OPEN_ERROR If an attempt is made to open the wave output device
while another process owns it, an error message is sent
to the calling application.

DO_NOT_USE_AUDIO_DEVICE When this flag is set, speech samples are ignored until
one of the text-to-speech special modes is set. The text-

 1-39

to-speech special modes can be used to write the
speech samples to a wave file, memory buffers, or log
files. No error is returned if a wave output device is not
present.

Return Values This function returns a value of type MMRESULT. The return value is zero if the call is successful.
The return value is one of the following constants:

Constant Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR_NODRIVER No wave output device present.

MMSYSERR_NOMEM Memory allocation error.

MMSYSERR_ERROR DECtalk dictionary not found.

MMSYSERR_BADDEVICE_ID Device ID out of range.

MMSYSERR_ALLOCATED License exists but no more units available.

WAVERR_BADFORMAT Wave output device does not support request format.

Comments If a window procedure is defined, DECtalk Software will alert the calling application when one of the
following events occurs:

• A buffer is filled while DECtalk Software is in speech-to-memory mode

• An error occurs

• An index mark is encountered

 The default parameters are:

• Language: United States English.

• Speaking rate: 200 words per minute.

• Speaker: Paul

Windows Note: If you build an application for the static version of DECtalk Software, you must
include the winmm.lib file in the list of input files for the linker.

See Also: Callback Routines and Window Procedures (DECtalk Software Programmer’s Guide)

 Dictionary Functions (Windows) (DECtalk Software Programmer’s Guide)

 TextToSpeechLoadUserDictionary()

 TextToSpeechOpenInMemory()

 TextToSpeechOpenLogFile()

 TextToSpeechOpenWaveOutFile()

 TextToSpeechShutdown()

 TextToSpeechSpeak()

 TextToSpeechStartupEx()

1-40

 TextToSpeechUnloadUserDictionary()

 1-41

TextToSpeechStartup() [Linux and UNIX]

The TextToSpeechStartup() function for Linux and UNIX initializes the text-to-
speech system, defines the callback routine, checks for valid licenses, and loads the
main and user pronunciation dictionaries. A single process can run multiple instances
of DECtalk.

Syntax MMRESULT TextToSpeechStartup (LPTTS_HANDLE_T *phTTS,
UINT uiDeviceNumber,
DWORD dwDeviceOptions,
VOID (*DtCallbackRoutine)(),
LONG dwCallbackParameter)

Parameters LPTTS_HANDLE_T *phTTS Specifies a pointer to a pointer to a text-to-speech
handle.

 UINT uiDeviceNumber Specifies a device number of the wave output device. A
value of WAVE_MAPPER can be used to select the first
available device.

 DWORD dwDeviceOptions Specifies how the wave output device is managed. It can
be a combination of the device-option constants
OWN_AUDIO_DEVICE, REPORT_OPEN_ERROR, and
DO_NOT_USE_AUDIO_DEVICE, which are defined in
the include file ttsapi.h and described below.

VOID *(DtCallbackRoutine)() Specifies a callback routine, which is used by DECtalk
Software to inform the application when the buffer is full
(if DECtalk Software in-memory calls are being used) or
when the TextToSpeechSpeak() function encounters an
index mark. Refer to Callback Routines and Window
Procedures in the DECtalk Software Programmer’s
Guide for information about the argument list for the
callback routine.

 A value of NULL is passed if no callback routine is
desired.

LONG dwCallbackParameter Specifies a pointer to a user-specified parameter. This is
used to pass parameters into the callback routine.

 A value of NULL should be passed if no user-specified
parameters are desired.

1-42

Device-Option Constant (ttsapi.h) Description

OWN_AUDIO_DEVICE The wave output device is opened. No other process can
allocate the wave output device until
TextToSpeechShutdown() is called.

 If OWN_AUDIO_DEVICE is NOT specified, the wave
output device is opened after audio is queued by the
TextToSpeechSpeak() function. The wave output
device is released when the text-to-speech system has
completed speaking.

REPORT_OPEN_ERROR If an attempt is made to open the wave output device
while another process owns it, a callback is made to the
callback routine that was specified in the
DtCallbackRoutine parameter.

DO_NOT_USE_AUDIO_DEVICE When this flag is set, speech samples are ignored until
one of the text-to-speech special modes is set. The text-
to-speech special modes can be used to write the
speech samples to a wave file, memory buffers, or log
files. No error is returned if a wave output device is not
present.

Return Values This function returns a value of type MMRESULT. The return value is zero if the call is successful.
The return value is one of the following constants:

Constant Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR_NODRIVER No wave output device present.

MMSYSERR_NOMEM Memory allocation error.

MMSYSERR_ERROR DECtalk dictionary not found.

MMSYSERR_BADDEVICE_ID Device ID out of range.

MMSYSERR_ALLOCATED License exists but no more units available.

MMSYSERR_NOTENABLED License does not exist.

WAVERR_BADFORMAT Wave output device does not support request format.

Comments If a callback routine is defined, DECtalk Software will alert the calling application when one of the
following events occurs:

• A buffer is filled while DECtalk Software is in speech-to-memory mode

• An error occurs

• An index mark is encountered

 The default parameters are:

 1-43

• Language: United States English.

• Speaking rate: 200 words per minute.

• Speaker: Paul

See Also Callback Routines and Window Procedures (DECtalk Software Programmer’s Guide)

 Dictionary Functions (Linux and UNIX) (DECtalk Software Programmer’s Guide)

 TextToSpeechLoadUserDictionary()

 TextToSpeechOpenInMemory()

 TextToSpeechOpenLogFile()

 TextToSpeechOpenWaveOutFile()

 TextToSpeechShutdown()

 TextToSpeechSpeak()

 TextToSpeechStartupEx()

 TextToSpeechUnloadUserDictionary()

1-44

TextToSpeechStartupEx()

The TextToSpeechStartupEx() function initializes the text-to-speech system,
defines the callback procedure, checks for valid licenses, and loads the main and user
pronunciation dictionaries. A single process can run multiple instances of DECtalk.

Syntax MMRESULT TextToSpeechStartupEx (LPTTS_HANDLE_T *phTTS,
 UINT uiDeviceNumber,
 DWORD dwDeviceOptions,
 VOID (*DtCallbackRoutine)(),
 LONG dwCallbackParameter)

Parameters LPTTS_HANDLE_T *phTTS Specifies a pointer to a pointer to a text-to-speech
handle.

 UINT uiDeviceNumber Specifies the device number of the wave output device.
A value of WAVE_MAPPER can be used to select the
first available device.

 DWORD dwDeviceOptions Specifies how the wave output device is managed. It can
be a combination of the device-option constants
OWN_AUDIO_DEVICE, REPORT_OPEN_ERROR, and
DO_NOT_USE_AUDIO_DEVICE, which are defined in
the include file ttsapi.h and described below.

VOID *(DtCallbackRoutine)() Specifies a callback routine, which is used by DECtalk
Software to inform the application when the buffer is full
(if DECtalk Software in-memory functions are being
used) or when the TextToSpeechSpeak() function
encounters an index mark. Refer to the DECtalk
Software Programmer’s Guide, Chapter 3, Introduction
to the DECtalk Software API, Callback Routines and
Window Procedures for information about the argument
list for the callback routine.

 A value of NULL is passed if no callback routine is
desired.

LONG dwCallbackParameter Specifies a pointer to a user-specified parameter. This is
used to pass parameters into the callback routine.

 A value of NULL should be passed if no user-specified
parameters are desired.

 1-45

Device-Option Constant (ttsapi.h) Description

OWN_AUDIO_DEVICE The wave output device is open. No other process can
allocate the wave output device until
TextToSpeechShutdown() is called.

 If OWN_AUDIO_DEVICE is NOT specified, the wave
output device is opened after audio is queued by the
TextToSpeechSpeak() function. The wave output
device is released when the text-to-speech system has
completed speaking.

REPORT_OPEN_ERROR If an attempt is made to open the wave output device
while another process owns it, a callback is made to the
callback routine specified in the DtCallbackRoutine
parameter.

DO_NOT_USE_AUDIO_DEVICE When this flag is set, speech samples are ignored until
one of the text-to-speech special modes is set. The text-
to-speech special modes can be used to write the
speech samples to a wave file, memory buffers, or log
files. No error is returned if a wave output device is not
present.

Return Values This function returns a value of type MMRESULT. The return value is zero if the call is successful.
The return value is one of the following constants:

Constant Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR_NODRIVER No wave output device present.

MMSYSERR_NOMEM Memory allocation error.

MMSYSERR_ERROR DECtalk dictionary not found.

MMSYSERR_BADDEVICE_ID Device ID out of range.

MMSYSERR_ALLOCATED License exists but no more units available.

MMSYSERR_NOTENABLED License does not exist. (Linux and UNIX only)

WAVERR_BADFORMAT Wave output device does not support request format.

Comments If a callback routine is defined, DECtalk Software will alert the calling application when one of the
following events occurs:

• A buffer is filled while DECtalk Software is in speech-to-memory mode

• An error occurs

• An index mark is encountered

 The default parameters are:

1-46

• Language: United States English

• Speaking rate: 200 words per minute

• Speaker: Paul

Windows Note: If you build an application for the static version of DECtalk Software, you must
include the winmm.lib file in the list of input files for the linker.

Note

Callback routines should not contain calls to any TextToSpeech…() functions. If
callback routines contain TextToSpeech…() functions, an application crash may occur in
the application calling DECtalk Software.

See Also Callback Routines and Window Procedures (DECtalk Software Programmer’s Guide)

 Dictionary Functions (DECtalk Software Programmer’s Guide)

 TextToSpeechLoadUserDictionary()

 TextToSpeechOpenInMemory()

 TextToSpeechOpenLogFile()

 TextToSpeechOpenWaveOutFile()

 TextToSpeechShutdown()

 TextToSpeechSpeak()

 TextToSpeechStartup()

 TextToSpeechUnloadUserDictionary()

 1-47

TextToSpeechSync()

The TextToSpeechSync() function blocks until all previously queued text is
processed.

Syntax MMRESULT TextToSpeechSync (LPTTS_HANDLE_T phTTS)

Parameters LPTTS_HANDLE_T phTTS Specifies an opened text-to-speech handle.

Return Values This function returns a value of type MMRESULT. The return value is zero if the call is successful.
The return value is one of the following constants

Constant Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR_ERROR Unable to complete queued text.

MMSYSERR_INVALHANDLE The text-to-speech handle was invalid.

Comments This function automatically resumes audio output if the text-to-speech system is in a paused state by
a previously issued TextToSpeechPause() call.

See Also TextToSpeechPause()

1-48

TextToSpeechTyping()

The TextToSpeechTyping() function speaks a single letter as quickly as possible,
aborting any previously queued speech. This is somewhat slower if
TextToSpeechSpeak() has been called since the last TextToSpeechTyping() or
TextToSpeechReset() call.

This function is primarily useful with the Access32 versions of DECtalk Software.
The function exists in non-Access32 versions, but is not fast.

Syntax void TextToSpeechTyping (LPTTS_HANDLE_T phTTS,
char cLetter)

Parameters LPTTS_HANDLE_T phTTS Specifies an opened text-to-speech handle.

 char cLetter Specifies the letter to speak.

Return Value None.

Comments This function should be called only when the application is synthesizing directly to an audio device
(not to memory or to a file).

 1-49

TextToSpeechUnloadUserDictionary()

The TextToSpeechUnloadUserDictionary() function unloads a user dictionary.
You must unload any previously loaded dictionary before you can load a new one.
That is, only one user dictionary can be loaded at a time.

Syntax MMRESULT TextToSpeechUnloadUserDictionary (LPTTS_HANDLE_T phTTS)

Parameters LPTTS_HANDLE_T phTTS Specifies an opened text-to-speech handle.

Return Values This function returns a value of type MMRESULT. The return value is zero if the call is successful.
The return value is one of the following constants:

Constant Description

MMSYSERR_NOERROR Normal successful completion (zero).

MMSYSERR_INVALHANDLE The text-to-speech handle was invalid.

Comments A user dictionary is created using the User Dictionary Build tool.

Windows Note: If you build an application for the static version of DECtalk Software, you must
include the winmm.lib file in the list of input files for the linker.

See Also Dictionary Functions (DECtalk Software Programmer’s Guide)

 TextToSpeechLoadUserDictionary()

1-50

TextToSpeechVersion()

The TextToSpeechVersion() function requests version information from DECtalk
Software that allows a calling application to test for DECtalk Software API (DAPI)
compatibility. The function returns a numerically encoded version number and
additionally may return a pointer to text information.

Syntax ULONG TextToSpeechVersion (LPSTR *VersionStr)

Parameters LPSTR *VersionStr Returns the address of a pointer to an array of
characters containing text information, or NULL for no
text information.

Return Values This function returns an unsigned long integer (ULONG) encoded with both the DAPI build version
and the DECtalk version number. The encoding is as follows:

Version Bits Used

DECtalk Major Version Bits 31-24

DECtalk Minor Version Bits 23-16

DAPI Major Version Bits 15-8

DAPI Minor Version Bits 7-0

 If DAPI Major Version is not the same as the DAPI Major Version the application was compiled with,
the DAPI is no longer compatible and the application may easily crash during further calls into the
DAPI.

 If DAPI Minor Version is lower than the version of the DAPI the application was compiled with, some
features that are expected may not be functional or present in the DAPI.

 For safety, users should make the following check:

 if (DAPI_Major_Version!=Build_Major_Version) Error();
 if (DAPI_Minor_Version<Build_Minor_Version) Error();
 success();

This allows your application to catch a majority of incompatibility bugs, which could arise from
DECtalk version mismatching.

 1-51

TextToSpeechVersionEx()

The TextToSpeechVersionEx() function returns information about the currently
running version of DECtalk Software.

Syntax ULONG TextToSpeechVersionEx (LPVERSION_INFO *ver)

Parameters LPVERSION_INFO *ver Returns the address of a pointer to an array of
characters with version information. The
VERSION_INFO structure is as follows:

 DWORD StructSize;

 DWORD StructVersion;

 WORD DLLVersion;

 WORD DTalkVersion;

 LPSTR VerString;

 LPSTR Language;

 DWORD Features;

Return Value This function returns an unsigned long integer (ULONG) with the size of the VERSION_INFO
structure. The return value is zero if the call is not successful. No other error information is available.

Example
BOOL IsDECtalkMLInstalled(void) {
 LPVERSION_INFO verinfo;

 TextToSpeechVersionEx(&verinfo);
 if (ver->Features & TTS_FEATS_MULTILANG) return TRUE;
 return FALSE;
}

 2-1

Chapter 2 —
DECtalk Software In-Line Commands

In-Line Commands: Overview

DECtalk Software includes in-line commands. In this documentation, in-line
commands are referred to as commands. You can use these commands to perform
simple operations, such as changing the speaking rate or speaking voice while
DECtalk Software is speaking. Commands are inserted directly into the ASCII text
that is sent to the synthesizer. Table 2-1 lists the DECtalk Software in-line commands
and their associated functions.

With phoneme interpretation, it is possible to control intonation and stress and to
create special effects, such as singing. These symbols and special effects can be
added into the ASCII text stream. See the description of the Phoneme
Interpretation command for more information.

When you use several commands together, they may interact with each other and
affect the output. If incorrect syntax is used in a command, the right bracket (]) is
ignored, because it might be considered part of the illegal string. To avoid this
situation, insert an extra right bracket (]) in the command and use the Error
command to enable the speaking of errors.

Note

Unique abbreviations of command names and option names work reliably.
However, only 4-character abbreviations will be supported in future releases. A
character abbreviation of less than four characters that works in the current release
may not be unique in a future release. Only 4-character abbreviations, as shown in
this documentation, will be supported for valid commands in future releases.

In addition to the commands fully described in this chapter, DECtalk Software has a
Design Voice command that allows you to modify the characteristics of a voice. For
complete information on how to use the Design Voice command to change a voice,
see Chapter 5.

2-2

Table 2-1 DECtalk Software In-Line Commands

Command Syntax Function

Comma Pause [:comma DD] or
[:cp DD]

Inserts a comma pause into spoken
text

Design Voice [:dv XX YY] Customizes a DECtalk Software voice
by selecting and setting speaker-
definition options

Dial Tones [:dial YY] Dials telephone numbers

Error [:error XX] Sets the error mode for a module

Index Mark [:index mark DD] Inserts marks, which are recognized
by the application, into text

Log [:log XX YY] Sets logging modes for the module

Mode [:mode XX YY] Allows words and symbols to be
interpreted for special use

Name [:name XX] or
[:nXX]

Selects the name of the DECtalk
Software voice

Period Pause [:period DD] or
[:pp DD]

Inserts a pause equivalent to a period
in a sentence into spoken text

Phoneme
Interpretation

[:phoneme XX1 XX2 YY] Allows everything within brackets to be
interpreted as phonemic text

Pitch [:pitch DD] Raises by the value specified the
frequency of uppercase letters spoken
in typing mode

Play Wave Files [:play <file>] Plays wave files embedded in text
strings

Pronounce [:pronounce XX] Speaks alternate, primary, or proper
noun pronunciation of a word

Punctuation [:punct XX] Turns punctuation on and off

Rate Selection [:rate DD] Selects speed at which text is spoken

Say [:say XX] Allows DECtalk Software to speak
words before they are queued

Skip [:skip XX] Allows users to skip specified parts of
the test preprocessing

Sync [:sync] Synchronizes activity between
DECtalk Software and an application
program

Tone [:tone DD, DD] Creates tones of a specified length
and frequency

Volume [:volume XX DD] or
[:volume XX DD1 DD2]

Sets the volume

 2-3

Note

Commands are not synchronous unless otherwise stated. To make a command
synchronous, use the [:sync] command. See the Sync command for more information.

Beginning with SAPI Version 5, you can use DECtalk Software inline commands in SAPI
text buffers. However, the inline commands are not supported and are ignored in pre-
Version 5 SAPI text buffers.

2-4

Comma Pause [:comma]

The Comma Pause command increases or decreases the length of the comma pause
from the current value by the delta value specified, in milliseconds. This command is
asynchronous. The comma pause can be increased and decreased. The [:cp 0]
command resets the comma pause to its default state (approximately 160 ms).
Comma pauses can be increased by 30,000 ms (30000) and decreased by 40 ms (-
40). All values outside the legal range default to the nearest legal values.

SYNTAX: [:comma DD]

ABBREVIATION: [:comm DD]

ALTERNATE COMMAND: [:cp DD] and [:cp 0]

OPTIONS: none

PARAMETERS: Pause time in milliseconds

DEFAULT: 160 ms

EXAMPLES: [:comma 250]

 2-5

Design Voice [:dv]

The Design Voice command customizes a DECtalk Software voice by selecting and
setting speaker-definition options. This command is asynchronous. DECtalk
Software voices provide an adequate selection for most applications. However, if
you have a special application requiring a monotone or unusual voice, you can use
the Design Voice command to modify any DECtalk Software voice. The speaker-
definition options and parameters can be entered as a string or one at a time.

The Design Voice command options and parameters are documented and explained
in Chapter 5.

2-6

Dial Tones [:dial]

The Dial Tones command generates tones called Dual Tone Multiple Frequency
(DTMF) Tones or Touch-Tones™. The Dial Tones command is a synchronous
command that can be used to dial a telephone. The tone characters are 0-9, #, *, and
A, B, C, D (in uppercase only). A non-tone character generates a silent interval
between dialed digits. White space characters (tabs, spaces) should not be used as
dial tone characters.

SYNTAX: [:dial YY]

ABBREVIATION: none

ALTERNATE COMMAND: none

OPTIONS: none

PARAMETERS: String of dial characters (0-9, A, B, C, D, #, *)

DEFAULT: none

EXAMPLES: [:dial 508-555-1212]

 2-7

Error [:error]

The Error command asynchronously sets the error mode for the text-to-speech
system. This command is useful for debugging an application. When opening a log
file, using the [:error text] command, DECtalk Software checks to see if the system
is in startup mode. If it is in one of the text-to-speech special modes (wave-file, log-
file, or text-to-speech memory) instead, this command fails. See Special Text-To-
Speech Modes in the DECtalk Software Programmer’s Guide for more information.

In the default setting for DECtalk Software, the Error command has the speak
option turned on. This means that DECtalk Software reports any command errors
that it can detect. You can set the [:error ignore] command to avoid this problem.

SYNTAX: [:error XX]

ABBREVIATION: [:erro XX]

ALTERNATE COMMAND: none

OPTIONS: text Log all text to a file in the current
directory called log.txt

 ignore Ignore all errors

 speak Speak error string in the current
command

PARAMETERS: none

DEFAULT: Error string is spoken

EXAMPLES: [:error speak]

2-8

Index Mark [:index mark]

Index Mark commands report the progress of the text as it is spoken. Index marks
are position markers; they do not modify heuristics or word pronunciations in any
way. The index mark sequence inserts a flag into the text stream. When DECtalk
Software encounters an Index Mark command, a message is sent to the calling
application. Index marks cannot be put in the middle of a word. This command is
synchronous.

• For more information on using index marks, refer to Index Marks for Speech
Status.

• For more information about returning index marks to a calling application, see
Callback Routines and Window Procedures in the DECtalk Software
Programmer’s Guide.

If a callback routine or window procedure is not specified in the startup function,
index marks in the text are ignored.

SYNTAX: [:index mark DD]

ABBREVIATION: [:inde DD]

ALTERNATE COMMAND: none

OPTIONS: none

PARAMETERS: Numeric index mark value

DEFAULT: none

EXAMPLES: [:index mark 01]

Note

This command is not recommended for use with the Microsoft Speech API (SAPI). This
command was designed for the DECtalk Software API (DAPI) only. Refer to the DECtalk
Software Programmer’s Guide for a detailed description of the DAPI.

 2-9

Log [:log]

The Log synchronously logs text, phonemes, or syllables into a log file. The log file,
called log.txt, can be found in the current directory. When opening a log file,
DECtalk Software checks to see if the system is in startup mode. If it is in one of the
text-to-speech special modes (wave-file, log-file, or text-to-speech memory) instead,
this command fails. See Special Text-To-Speech Modes in the DECtalk Software
Programmer’s Guide for more information.

SYNTAX: [:log XX YY]

ABBREVIATION: none

ALTERNATE COMMAND: none

OPTIONS: text Log all text to the log file

 syllables Log converted syllables to the log file

 Phonemes Log converted phonemic text to the log file

PARAMETERS: On Turns on the specified log option

 Off Turns off the specified log option

 Set Turns on the specified log option while
turning off all other log options

DEFAULT: All of the log options are turned off

EXAMPLES: [:log phonemes on] The phonemes for this sentence will be
stored in a file named log.txt [:log phonemes off]

2-10

Mode [:mode]

The Mode command changes the mode for all text processed after this command. It
remains in effect until the end of the file is reached or until the next Mode command
is encountered. This is an asynchronous command. Refer to the description of the
Sync command for information on how to make this command synchronous.

SYNTAX: [:mode XX YY]

ABBREVIATION: None

ALTERNATE COMMAND: None

OPTIONS: math Change interpretation of selected
symbols

 europe Select European cardinal pronunciation

 spell Spell all words

 name Pronounce all uppercase verbs as proper
nouns (see also [:pronounce name]
command)

 latin Not supported

 email Activates email parsing rules

PARAMETERS: on Turns on the specified mode option

 off Turns off the specified mode option

 set Turns on the specified mode option while
turning off all other mode options

DEFAULT: All of the mode options are turned off

EXAMPLES: [:mode spell on]

Europe Mode Example:

When Mode is set to Europe, [mode europe on], a comma (,) is the separator
between the integer and fraction part of a number. A period (.) is the separator
between 3-digit blocks.

1.255 (United States) = 1,255 (Europe)

125,873 (United States) = 125.873 (Europe)

 2-11

Math Mode Example:

When Mode is set to Math, [:mode math on], special symbols and characters are
pronounced with mathematical meanings. Specifically, the characters in Table 2-2
are treated differently:

Table 2-2 DECtalk Interpretation of Special Characters

Symbol Name DECtalk Says...

+ plus plus (no change from normal speech)

- hyphen minus

* asterisk multiplied by

/ slash divided by

 ̂ circumflex to the power of

< less than less than

> greater than greater than

= equal sign equals

% percent sign percent

. period decimal point

xxE-xx (spelled) (scientific notation)

Name Mode Example:

When Mode is set to Name, [:mode name on], uppercase words that occur in
locations other than the beginning of a sentence are interpreted as special cases and
pronounced as proper names.

Note

Do not enable the [:mode name] command except when pronouncing lists of names.
This command interprets any uppercase word as a name. When finished, make sure that
this mode is set to off. For the occasional use of this utility, use the [:pronounce name]
command.

2-12

Email Mode Example:

When Mode is set to email, [:mode email on], email parsing rules are activated to
find email headers, to determine which email headers to speak, and to find email
text.

• The specific text strings at the start of a line that initiate email header mode are,
as follows:

From:
Return-Path:
%======Internet
Message-ID:

In email header mode, the DECtalk text preprocessor goes into line-by-line
processing.

• In email header mode, the text lines saved for text preprocessing are the text
lines that start with the following:

Sent:
Date:
Subject: Re:
Subject:
From:
To:
cc: or CC:
------ Forwarded Message

• In email header mode, each text line saved for text preprocessing gets a pause
added at the end of the line.

• When DECtalk detects an empty line while still in email header mode, DECtalk
goes into email text processing mode. An empty line is a line that has a
<Return/Enter> only.

• In email text processing mode, DECtalk Software does the regular text
preprocessing and checks for another possible email header that starts with
%======Internet. If the text string %======Internet is found,
DECtalk goes into email header mode.

The [:mode email off] command ends email processing mode.

An example of a UNIX email message with the Mode command for email is as
follows:

[:mode email on]

 2-13

From John Doe Wed Jun 10 18:07:28 EST
Return-Path:<john@node.com>
Received: from home.node.com ([127.0.0.1]) by smtp.node.com
Message-ID: <32FB6581.581A@smtp.node.com>
Date: Wed, 10 May 2000 18:07:28 EST
From: john@node.com (John Doe)
Organization: Force Computers, Inc.
X-Mailer: ELM
MIME-Version: 1.0
To: jane@node.com
Subject: DECtalk Parsing
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit
X-Mozilla-Status: 0001

Hi Jane,

At 11:52 EST on Wed Jun 10, I found a great web site. It’s a
Force Computers web site all about the DECtalk products.
Take a look at URL:

http://www.forcecomputers.com/product/dectalk/dtalk.htm

Let me know what you think by mailing me at
john@aol.node.com or snail mail at: John Doe, 4321 St. James
St.,Mt. View, CA 12345-6789, phone (123)297-4863. Or write
to Dr. John Doe, 10 42nd St., Boston, MA 01234, phone 617-
546-2345.

See ya! :-)

John

%======Internet headers and postmarks (see
DECWRL::GATEWAY.DOC)======
%Received: from smtp.node.com by node.com (5.6/rmc-22feb94)
idAA17792;Wed, 8 Sep 22:47:37 –0400
%Received: from node.com by node.com (8.7.5/UNX 1.2/1.0/WV)
idWWA13939; Wed, 10 May 2000 22.35.28 –0400 (EDT)
%Received: from node.com(smtp.node.com[127.0.0.1]) by
worldaccess.com (8.6.10/8.6.10) with SMTPidTAA10463 for
<jane@node.com>;Wed, 10 May 2000 19:33:57 –0700
%Message-Id:<32094F06.4045@node.com>
%Date: Wed, 10 May 2000 19:20:54 –0700
%From: john Doe <John@node.com>
%Organization: Force Computers, Inc.
%X-Mailer: ELM
%Mime-Version: 1.0

2-14

%To: “Jane Smith, jane@node.com”
%Subject: Re: DECtalk Parsing
%References: <9608071721.AA16334@mpde/com>
%Content-Type: text/plain; charset=us-ascii
%Content-Transfer-Encoding: 7bit

[:mode email off]

The email header lines shown in bold are the lines saved for text preprocessing.

Some of the lines beginning with the % character in the example are shown
wrapping to a second or third line. However, the actual text line is the line of text
ended by a line terminator, such as <Return/Enter>.

 2-15

Name [:name]

The Name command allows the current speaking voice to be changed to one of ten
built-in DECtalk Software voices. XX represents the speaker name or letter variable
for each voice. The letter variable is the first letter of the speaker name. This
command is synchronous.

SYNTAX: [:name XX]

ABBREVIATION: none

ALTERNATE COMMAND: [:nXX]

OPTIONS: Speaker Variable Description

 PAUL p Default male voice

 HARRY h Full male voice

 FRANK f Aged male voice

 DENNIS d Male voice

 BETTY b Full female voice

 URSULA u Aged female voice

 WENDY w Whispering female voice

 RITA r Female voice

 KIT k Child’s voice

 VAL v Val’s voice

PARAMETERS: none

DEFAULT: PAUL

EXAMPLES: [:name KIT] or [:nk]

Note s

• A user can change any of the voice characteristics of the current speaker by using the Design Voice [:dv] command.
These changes are active only while the current speaker remains current. To save the voice changes, use the save option
of the Design Voice command, which saves the changes as the voice of Val. For information on the individual
characteristics of a speaker or details on how to change a voice using the Design Voice command, see Chapter 5.

• The Speak applet displays language-specific speaker names, as listed below; however, the Name [:name] in-line
command and the Dtsample applet currently support only the English set:

ENGLISH: Paul Harry Frank Dennis Betty Ursula Wendy Rita Kit

SPANISH: Pablo Humberto Francisco Domingo Berta Úrsula Wendy Rita Juanito

GERMAN: Paul Hans Frank Dieter Beate Ursula Wendy Rita Karsten

FRENCH: Oliver Michel François Joël Marjolaine Angèle Nadia Jacqueline Sébastien

2-16

Period Pause [:period]

The Period Pause command increases or decreases the length of the period pause
from the current value by the delta value specified in milliseconds. The [:pp 0]
command resets the period pause to its default state (approximately 640 ms). Period
pauses can be increased by 30,000 ms (30000) and decreased by 380 ms (-380). All
values outside the legal range default to the nearest legal values. This command is
asynchronous.

SYNTAX: [:period DD]

ABBREVIATION: [:peri DD]

ALTERNATE COMMAND: [:pp DD] and [:pp 0]

OPTIONS: none

PARAMETERS: Pause time in milliseconds

DEFAULT: 640 ms

EXAMPLES: [:period 250]

 2-17

Phoneme Interpretation [:phoneme]

When phoneme interpretation is set, the Phoneme Interpretation command allows
everything within brackets to be interpreted as phonemic text. All phoneme
interpretation of text can be silenced by using the [:phoneme silent on] command.
By default, the text is spoken without phoneme interpretation. This command is
asynchronous.

When you phonemicize text, put valid phoneme strings in brackets. A list of valid
phonemic symbols can be found in Table 4-1 through Table 4-6.

Phoneme interpretation allows you to specify the preferred pronunciation of a word
or phrase. It is important to note that this command sets the left bracket ([) and right
bracket (]) characters as phoneme delimiters. When the user has the phoneme
interpretation turned on [:phoneme on], all text and characters that appear between
brackets are interpreted as phonemic text and is pronounced as such. For example, to
say the word associate, simply embed the phonemic string [axs ’ owshiyeyt] in the
text string. Note that the pronunciation of the phonemic string is different depending
on whether phoneme interpretation is on or off.

When phoneme interpretation is on, additional attributes can be associated with the
phoneme text. For information on how to code a phoneme sequence to produce
musical sounds, refer to Chapter 4. For a complete list of stress and syntactic
symbols that can be used with phoneme text, see Table 4-7 and Table 4-8.

Note

Arpabet mode is a 2-character system. All single character symbols must be followed by
a space so that faulty translations do not occur. Consider the phonemic representation of
“whitehorse,” [* w ‘ayt hxowr s]. The letter “t” in this phonemic representation must be
followed by a space, so that it is not interpreted as part of the phonemic symbol [th] in the
representation of “whitehorse.”

Some older versions of DECtalk Software supported single characters in arpabet mode.
Application programs written for use with those versions may fail to function correctly
when used with DECtalk Software V4.6 or higher.

2-18

SYNTAX: [:phoneme XX1 XX2 YY] or [:phoneme arpabet speak on]

ABBREVIATION: [:phon XX1 XX2 YY]

ALTERNATE COMMAND: None

OPTIONS: arpabet Set phonetic interpretation to arpabet
alphabet. (Currently, this option is the
only alphabet allowed.)

 speak If phoneme interpretation is on, speak
encountered phonemes. The speak
option is ignored if phoneme
interpretation is off.

 silent If phoneme interpretation is on, do not
speak encountered phonemes. The
silent option is ignored if phoneme
interpretation is off.

PARAMETERS: On Set phoneme interpretation on

 Off Set phoneme interpretation off

DEFAULT: Phonetic interpretation is off

EXAMPLES: [:phoneme arpabet speak on] [axs ’owshiyeyt] associate

 [:phoneme speak on] [axs ’owshiyeyt] associate

 [:phoneme on] [axs ’owshiyeyt] associate

 [:phoneme speak off] [axs ’owshiyeyt] pronounced as axsociate

 [:phoneme off] [axs ’owshiyeyt] pronounced as axsociate

 [:phoneme silent off] [axs ’owshiyeyt] pronounced as axsociate

 [:phoneme silent on] [axs ’owshiyeyt] associate not spoken

Note

Make sure that you use a right bracket (]) to end the phonemic symbols. If you do not,
any normal text appearing after the phonemic symbols sounds garbled. One right bracket
is sufficient to close phonemic mode. It is sometimes useful to begin a text file with a right
bracket (]) to ensure that text is not interpreted phonemically. A command sequence
consisting of a left bracket followed by a colon ([:) is always interpreted as the beginning
of a command.

 2-19

Pitch [:pitch]

The Pitch command raises, by the value specified, the frequency of uppercase letters
spoken in typing mode using the typing table (spoken one letter at a time). The
default frequency difference between spoken lowercase and uppercase letters is 35
Hz. The frequency difference enables users to distinguish between uppercase and
lowercase letters. You can return the pitch increment for uppercase letters to the
default value by specifying the command [:pitch 35] or by restarting Speak. This
command is asynchronous.

DECtalk adds the value of the argument, DD (in Hertz), as a pitch increment, to the
uppercase letters in the next phoneme string it processes. However, the Pitch
command is asynchronous. Place a Sync command in the character stream after the
Pitch command to ensure that the Pitch command is processed before the letters that
follow it in the buffer you are using.

SYNTAX: [:pitch DD]

ABBREVIATION: none

ALTERNATE COMMAND: none

OPTIONS: none

PARAMETERS: frequency in hertz

DEFAULT VALUE: 35

EXAMPLES: [:pitch 60] bBcCdD [:pitch 35] eEfFgGhH

2-20

Play Wave Files [:play]

Play Wave Files is a synchronous command that plays any wave file that is
supported by your computer’s audio system. When opening a wave file, DECtalk
Software checks to see if the system is in startup mode. If it is in one of the text-to-
speech special modes (wave-file, log-file, or text-to-speech memory) instead, this
command fails. See Special Text-To-Speech Modes in the DECtalk Software
Programmer’s Guide for more information.

SYNTAX: [:play <file>]

ABBREVIATION: none

ALTERNATE COMMAND: none

OPTIONS: none

PARAMETERS: A directory path and file name

DEFAULT: none

EXAMPLES: [:play bell.wav]

 2-21

Pronounce [:pronounce]

The Pronounce command determines the type of pronunciation for the word
immediately following this command. This command is synchronous.

Use the [:pronounce alternate] command to obtain an alternative pronunciation for
a word. See the Homograph tables in Chapter 4 for examples of primary and
alternate pronunciations of words. Using the word wind as an example, the primary
pronunciation is w ’ ihn d, as in ‘the wind is blowing’. The alternate pronunciation,
denoted by [:pronounce alternate] wind, is w ' ayn d, as in ‘wind up the top’.

Use the [:pronounce name] command to pronounce a word as a proper name. First
names, last names, street names, and place names are all examples of proper names.

SYNTAX: [:pronounce XX]

ABBREVIATION: [:pron XX]

ALTERNATE COMMAND: none

OPTIONS: alternate Uses the alternate
pronunciation

 primary Uses the primary
pronunciation

 name Uses the proper name
pronunciation

PARAMETERS: none

DEFAULT: Uses the primary pronunciation

EXAMPLES: Terry [:pronounce name] Doucette played [:pronounce
primary] bass in the band.

2-22

Punctuation [:punct]

The Punctuation command lets you specify how DECtalk software treats
punctuation marks when it encounters them in text. This command is synchronous.
The four options of the Punctuation command are:

• none – No punctuation is spoken.

• some – Text is read normally, and punctuation marks are used to mark pauses,
changes in pitch, and so on.

• all – All punctuation is spoken, for example “,” is spoken as “comma.”

• pass – Turns off all special punctuation processing. For example, periods as part
of file names are not spoken.

The pass option is useful in proofreading, as well as in applications where special
characters are encountered, such as in a computer program. See Chapter 6 for more
information on preprocessor parsing for treatment of punctuation.

Note

When the [:punct none] command is used, no punctuation is pronounced, although
dollar amounts and percentages still are processed.

SYNTAX: [:punct XX]

ABBREVIATION: [:punc XX]

ALTERNATE COMMAND: none

OPTIONS: none Punctuation symbols and some other
symbols are not spoken as words; all
punctuation is treated as text breaks

 some Text is read normally; clause boundary
punctuation is not spoken, but all
symbols such as $ are spoken as words

 all All punctuation symbols and other
symbols are spoken as words

 pass All special punctuation processing is
turned off

PARAMETERS: none

DEFAULT: [:punct some]

EXAMPLES: [:punct none]

 2-23

Rate Selection [:rate]

The Rate Selection command sets the speaking rate in DECtalk Software. The rate
can range from 75 to 600 words per minute. All values outside the range of 75 to 600
default to the nearest legal value. For example, if you select a speaking rate of [:rate
880] or 880 words per minute, DECtalk Software defaults to 600 words per minute.
The DECtalk synthesizer starts at a rate of 200 words per minute by default. This
command is asynchronous.

SYNTAX: [:rate DDD]

ABBREVIATION: none

ALTERNATE COMMAND: none

OPTIONS: none

PARAMETERS: Rate in words per minute

EXAMPLES: [:rate 400]

2-24

Say [:say]

The Say command specifies when speaking begins. The Say command options are
speak on end of clause (clause), speak on end of word (word), speak on end of letter
(letter), and speak on end of line (line). This command is synchronous.

In DECtalk Software, each clause, word, or letter is spoken as it is queued. In word
and letter mode, DECtalk Software does not need to wait for a clause terminator to
begin speaking. Word mode is similar to letter mode except text is spoken a word at
a time. A space after a character or string of characters causes that string to be
spoken. This mode interacts with the rate selection command so you can increase or
decrease the rate at which the text is spoken. In clause mode, speaking starts when
DECtalk Software is sent a clause terminator (period, comma, exclamation point, or
question mark) followed by a space. There is no time-out limit. This is the normal
mode where text is spoken a phrase, clause, or sentence at a time. Clause mode is the
default mode.

SYNTAX: [:say XX]

ABBREVIATION: none

ALTERNATE COMMAND: none

OPTIONS: clause Speak on end of clause.

 word Speak on end of word.

 letter Speak on end of letter.

 filtered
letter

Speak on end of letter, ignoring
control characters, such as
“vertical tab” and “line feed”

 line Speak on end of line.

PARAMETERS: none

DEFAULT: [:say clause]

EXAMPLES: [:say word]

Note

In letter mode, the left bracket is spoken only after the next character is entered because
DECtalk Software needs to know if this is the beginning of a new command.

 2-25

Skip [:skip]

The Skip command allows the user to skip various parts of the text preprocessing. It
remains in effect until another Skip command is issued. The command allows only
one value to be in effect at a time. This command is synchronous.

See Chapter 6 for information on the preprocessor rules for parsing.

SYNTAX: [:skip XX]

ABBREVIATION: none

ALTERNATE COMMAND: none

OPTIONS: all Skip all preprocessing

 cpg Skip codepage translation

 none Do not skip anything

PARAMETERS: none

DEFAULT: The default is set to [:skip none].

EXAMPLES: [:skip cpg]

[:skip all]

[:skip none]

NOTES: This command allows only one option to be in effect at
a time; in the example, [:skip cpg] overrides [:skip all].

2-26

Sync [:sync]

The Sync command provides coordination between an application program and
DECtalk Software. This command is synchronous.

An application program can send data to DECtalk Software faster than DECtalk
Software can speak it. Therefore, if the user needs to carry on a dialogue with the
application program, the application program must be notified that DECtalk
Software has finished speaking the text sent to it.

When the program sends the Sync command, DECtalk Software finishes speaking
any pending text before processing the next text command. This command also acts
as a clause boundary, just the same as a comma, period, exclamation point, question
mark, semicolon, or colon when followed by a space.

Some DECtalk inline commands are asynchronous. To ensure that these commands
are processed before the text following them, place a Sync command after an
asynchronous command that you want to synchronize. In the case of the Pause
command, you need to place a Sync command before the Pause command to
guarantee that all text preceding the Pause command is processed before the pause
occurs.

SYNTAX: [:sync]

ABBREVIATION: none

ALTERNATE COMMAND: none

OPTIONS: none

PARAMETERS: none

DEFAULT: N/A

EXAMPLES: My name is Bill S [:sync]

 2-27

Tone [:tone]

The Tone command is a synchronous command that generates sounds of different
frequencies and lengths based on the parameters you set. This command allows you
to make a wide variety of sounds for purposes such as notification or warnings.
Regular tones can also be used for a number of other purposes, such as indications of
a margin bell. This command is synchronous.

SYNTAX: [:tone DD, DD]

ABBREVIATION: none

ALTERNATE COMMAND: none

OPTIONS: none

PARAMETERS: Frequency: Sets the frequency to the desired level

 Duration: Tone duration in milliseconds

DEFAULT: none

EXAMPLES: [:tone 500,500]

2-28

Volume [:volume]

The Volume command is a synchronous command that changes the volume settings.
DECtalk Software changes the audio system gain in increments from 0 to 99, in
decibels (dB). Increments or decrements of 10 to 20 provide a perceptible increase or
decrease in volume. The Volume Set option is an absolute command; Volume Up
and Volume Down options are relative commands and increase or decrease the
original value. This command does not affect the volume when the application writes
wave files or uses the speech-to-memory capability, because scaling is not done to
the speech samples based on the Volume command settings.

Monaural Volume Control

The following monaural volume commands are supported. DD must be in the range
of 0 to 99.

SYNTAX: [:volume XX DD]

ABBREVIATION: [:volu XX DD]

ALTERNATE COMMAND: none

OPTIONS: set Sets the volume to the desired level

 up Increases the volume by the desired amount

 down Decreases the volume by the desired
amount

PARAMETERS: Volume amount

DEFAULT: none

EXAMPLES: [:volume up 30]

Stereo Volume Control

The following stereo volume commands are supported. The value of DD1 or DD2
must be in the range of 0 to 99.

SYNTAX: [:volume XX DD1 DD2]

ABBREVIATION: [:volu XX DD1 DD2]

ALTERNATE COMMAND: none

OPTIONS: lset Sets the left channel to the desired
level

 lup Increases the left channel by the
desired amount

 2-29

 ldown Decreases the left channel by the
desired amount

 rset Sets the right channel to the desired
level

 rup Increases the right channel by the
desired amount

 rdown Decreases the right channel by the
desired amount

 sset Sets the left channel to the DD1
amount and the right channel to the
DD2 amount

PARAMETERS: Volume amounts

DEFAULT: none

EXAMPLES: [:volume set 80 60]

 3-1

Chapter 3 —
Using In-Line Commands

This chapter provides an in-depth look at the DECtalk Software in-line commands,
commands that can be used within a DECtalk Software text file or application. For
information on using the Design Voice command, see Chapter 5.

Topics include:

• Changing Rhythm, Stress, and Intonation

• Developing an Electronic Mail-Reading Application

• Optimizing the Quality of Spoken Text

• Index Marks for Speech Status

• Speaking Rate

• Adjusting Period and Comma Pause Duration

• Text-Tuning Example

• Avoiding Common Errors

3-2

Changing Rhythm, Stress, and Intonation

DECtalk Software uses stress and syntactic symbols to control aspects of rhythm,
stress, and intonation patterns within a spoken text file. These symbols include
punctuation marks such as commas, periods, and parentheses. Punctuation marks are
recognized by DECtalk Software as indicating special phrasing requirements.

Table 4-8 lists these symbols.

Developing an Electronic Mail-Reading Application

DECtalk Software supplies an email parser for Windows and for UNIX (not for
MS-DOS). See the email option of the Mode command for additional information.

If you wish to write your own electronic mail preprocessor, implement the following
text conversions before sending the text to DECtalk Software:

• Parse the header boilerplate to remove extraneous information.

• Add the new paragraph symbol [+] to each blank line between paragraphs if
DECtalk Software is speaking paragraphs of text. Refer to Table 4-8 for the
complete list of syntactic symbols.

• Create your own application-specific user dictionary for words that have an
application-specific pronunciation.

• If DECtalk Software is connected to a database containing names, consider one
of the following options:

q Add the Pronounce command before the database word to force the
language specific rules on the name. For example:

[:pronounce name] name

See the Pronounce command description in Chapter 2 for more
information.

q Replace the database word with its phoneme text. For this option, you must
have phoneme interpretation turned on. See the Phoneme Interpretation
command description in Chapter 2 for more information.

• Scan the text for strings of numbers in a format understandable to your
application but not to DECtalk Software. For example, if you can extract the

 3-3

time format from an electronic mail message, you can add code to your
application to expand it to its “o’clock” form.

In many applications, the listener might want to write down number strings
(such as prices or telephone numbers). Your application can scan the text for
strings of numbers and, when they are found, send them to DECtalk Software in
a way that includes pauses at critical locations. For example:

The number is, 1 (800) 5 5 5, 1 2 3 4. [:rate 120]

That is, [_<300>] 1 (800), [_<500>] 5 5 5,

[_<900>] 1 2 3 4. [:rate 180].

Refer to Table 4-1 through Table 4-6 for a complete list of phoneme symbols,
including the silent underscore (_) symbol. See Chapter 4 for the syntax to add
duration and pitch to phoneme text.

The spaces between the numbers ensure that “five five five” is spoken rather
than “five hundred fifty five.” You can also use the [:mode spell on] command
to produce the same results. The slower speaking rate, [:rate 120], and the
silence phonemes, [_<300>], [_<500>], [_<900>], of specified duration, were
carefully selected to allow enough time for the listener to write down the entire
number. Silence phonemes were positioned after the commas (that is, [_<300>]
1 (800), [_<500>]), to maintain appropriate intonation.

As another example, if your application is required to speak sums of money
(such as bank balances or item costs), you might code the text to say:

Your balance is $244.05. That is, 2 4 4, [_<400>] point 0
5, [_<400>] dollars.

• When spelling an item, your application might need to distinguish the case of
letters. Consider using the Pitch command (see Chapter 2) or different voices to
distinguish between uppercase and lowercase letters. For example:

 [:nf]Maynard [:nf]M[:nb]a y n a r d [:nf]Maynard.

3-4

Optimizing the Quality of Spoken Text

DECtalk Software can generally choose correct pronunciations by itself. For
example, if you enter the following sentences:

He produced a lot of REFUSE. He REFUSEd the produce.

He INSERTS 5 INSERTS per minute. He DELIBERATEd DELIBERATEly for a long
time.

Generally, DECtalk Software correctly selects the proper homograph. However, in
certain unique contexts, the following user intervention may be needed:

• Replace the correct spelling of the word with a clever misspelling.
I red yesterday that . . .

• Spell the word phonetically.
I [r ’ ehd] yesterday that . . .

Note

For words that have two pronunciations (homographs), see the Homograph tables in
Chapter 4.

Additionally, use the following steps to optimize spoken text.

1. If a word is a compound, use a hyphenated spelling to help DECtalk Software
see the two parts of the compound.

The slide-show host . . .

2. Replace the text version by a phonemic string. Use the commands and phonemic
symbols, but make sure to place the lexical stress pattern correctly.

3. Now that each word has been pronounced in the best possible way, listen to the
total sentence rhythm and accent pattern. If it is not right, follow these steps.

(a) If it sounds as if there should be a short pause in a specific sentence
location, but DECtalk Software says the sentence without a pause, insert a
comma between the words in question.

(b) If the wrong word is emphasized in the sentence, emphasize the word that is
supposed to take the emphasis with the correct stress symbols.

The ["] younger man is the trouble-maker, not the older one.

(c) Use the stress symbols slash [/], backslash [\], and slash and backslash [/ \]
to make final adjustments. Refer to Table 4-7 for a complete list of stress
symbols.

 3-5

Index Marks for Speech Status

By embedding an Index Mark command in text, you can provide non-blocking
synchronization. DECtalk Software can use index marks to track exactly when the
text was spoken. The index marks bind themselves to the next speech sound, so you
MUST always include a sound after the Index Mark command. Therefore, if you
send, “Hello. [:index mark 5]”, DECtalk Software will wait until the next sound to
send the mark to the application. Index marks cannot be put in the middle of a word.

Index Marks are handled differently depending on whether the text-to-speech system
is in speech-to-memory mode. When an Index Mark command is encountered
while not in this mode, the index mark is returned to the calling application with a
message type of TTS_MSG_INDEX_MARK.

If the text-to-speech system is in the speech-to-memory mode, then the message type
is TTS_MSG_BUFFER and the index marks are returned in the index mark array, if
allocated, of the memory buffer structure. In addition to the index mark value, there
is an index sample number also passed in the array, to allow you to determine which
sample in the memory buffer corresponds to that index mark.

See Chapter 3 in the DECtalk Software Programmer’s Guide for more information
on returning index marks to the calling application.

3-6

Speaking Rate

The default speaking rate is 200 words per minute (WPM). DECtalk Software
speaking rates range from 75 to 600 WPM. In the Rate command, valid speaking
rates are between 75 and 600. Rates specified outside this range are limited to the
nearest legal value. Speaking rates can be adjusted to very slow, very fast, or
anywhere in between by using the following commands:

• [:rate 120]

Although the slowest possible rate is 75 WPM, 120 WPM is ideal for
information such as phone numbers, which need to be copied down by a
listener. Unless the listener is actually copying down each numeral, it might be
frustrating to listen to extended speech at slow rates.

• [:rate 160]

This rate is moderate (160 WPM). It sounds a little slow, but is sometimes
preferred when DECtalk Software is speaking math equations or long lists of
acronyms.

• [:rate 200]

This is the default rate for DECtalk Software (200 WPM). This rate is ideal for
listening to continuous text under optimal conditions.

• [:rate 240]

Experienced listeners may prefer to skim material at this rate (240 WPM).
Inexperienced listeners may not understand every word at this rate.

• [:rate 350]

This rate (350 WPM) is too fast to follow, but can be used to quickly scan
sections of text.

• [:rate 550]

This rate (550 WPM) is the fastest usable rate. It is too fast for most people to
follow, but can be used to scan text very quickly.

Changes in the speaking rate influence the duration and the number of pauses in text,
as well as the duration of individual phonemes. At rates below 140 WPM, DECtalk
Software inserts pauses at all phrase boundaries and pauses, and inserts phonemes
near the ends of phrases. At rates faster than 240 WPM, DECtalk Software deletes
all pauses and shortens phonemes.

 3-7

Adjusting Period and Comma Pause Durations

At the default speaking rate of 200 WPM, DECtalk Software pauses about half a
second after a period in the text and about a sixth of a second after a comma. When
you change the speaking rate, the pause durations are automatically adjusted.

In some situations, you might prefer to change the pause after a period or a comma
without changing the speaking rate. For example, to get DECtalk Software to read a
list of words with a longer pause after each (to allow the listener to write them
down), use the Period Pause command or the Comma Pause command.

• [:period 4500] apple. banana. strawberry.

This command adds a period pause of 4,500 ms (4.5 seconds) to the standard
half-second pause that occurs after a period in text. The total pause between
words is about five seconds. The accepted range for the period pause parameter
is -380 to 30,000 ms. A negative value for this parameter shortens the standard
period pause.

• [:comma 4800] apple, banana, strawberry,

This command adds a comma pause of 4,800 ms (4.8 seconds) to the standard
sixth of a second pause that occurs after a comma in the text at normal speaking
rate. The total pause between words separated by a comma is about five
seconds. The accepted range for the comma pause parameter is -40 to 30,000
ms. Values specified outside this range are limited to the nearest legal value.

• [:pp 0 :cp 0]

This command resets the period pause and comma pause to their normal default
values.

3-8

Text-Tuning Example

Although DECtalk Software allows for natural text-to-speech synthesis, the quality
of speech can often be enhanced by giving it a more natural flow. Much of this
tuning involves strategic placement of commas and periods, which tell the
application to pause. The spoken language and written text are different, because
spoken text generally does not contain information about pausing.

The text that follows is presented twice: the first time as originally written, and the
second time after phonemic and textual fixes were applied. For a complete list of
stress and syntactic symbols, refer to Table 4-7 and Table 4-8.

Original Version

[:np] A California Shaggy Bear Tale for Seven DECtalk Software Voices

by Dennis Klatt

[:np] Once upon a time, there were three bears.

They lived in the great forest and tried to adjust to modern times.

[:nh] I’m papa bear. I love my family but I love honey best.

[:nb] I’m mama bear. Being a mama bear is a drag.

[:nk] I’m baby bear and I have trouble relating to all of the demands of

older bears.

[:np] One day, the three bears left their condominium to search for honey.

While they were gone, a beautiful young lady snuck into the bedroom through

an open window.

[:nw] My name is Wendy. My purpose in entering this building should be

clear. I am planning to steal the family jewels.

[:np] Hot on her trail was the famous police detective, Frank.

[:nf] Have you seen a lady carrying a laundry bag over her shoulder?

[:np] A woman kneeling with her left ear firmly placed against a large rock

responded.

[:nu] No. No one passed this way. I’ve been listening for earthquakes all

morning, but have only spotted three bears searching for honey.

 3-9

Revised Version

In this section, text from the original example is enhanced with DECtalk Software
embedded commands. Phoneme interpretation is turned on to allow the stress and
syntactic symbols to be translated. See the Phoneme Interpretation command for
more information.

Turn on phoneme interpretation

[:phoneme arpabet speak on]

Add periods to add brief pauses after the title and author.

[:np] A California Shaggy Bear Tale for Seven DECtalk Software Voices.

By Dennis Klatt.

[:np] Once upon a time, there were three bears.

They lived in the great forest and tried to adjust to modern times.

Add commas to increase pause length and quotation marks for emphatic

stress.

[:nh] I’m papa bear. I love my family, but I love ["]honey best.

[:nb] I’m mama bear. Being a mama bear is a drag.

[:nk] I’m baby bear and I have trouble relating to all of the demands of

older bears.

[:np] One day, the three bears left their condominium to search for honey.

While they were gone, a beautiful young lady snuck into the bedroom through

an open window.

[:nw] My name is Wendy. My purpose in entering this building should be

clear. I am planning to steal the family jewels.

[:np] Hot on her trail was the famous police detective, Frank.

[:nf] Have you seen a lady carrying a laundry bag over her shoulder?

Add commas to increase pause length and phrasing.

[:np] A woman, kneeling with her left ear firmly placed against a large

rock, responded.

If the selected language supports pitch rise and fall symbols [/ \] and

emphatic stress symbols [’], use them to add pitch control and emphatic

stress.

[:nu] [‘] No. No [/] one passed this [/ \] way. I’ve been listening for

[‘] earthquakes all morning, but have only spotted three bears searching for

honey.

3-10

Avoiding Common Errors

When using DECtalk Software, try to avoid making common errors by doing the
following:

• When you make voice-selection changes, always return to the default voice you
have chosen. If you forget to return DECtalk Software to the default voice after
using one of the other voices, all future text uses the currently selected voice.

• The default setting for the Error command is to have the speak option turned
on. This means DECtalk Software reports any command errors that it can detect.
Set the [:error ignore] command to avoid this action.

• Enter a right bracket (]) at the beginning of your text if you use the Phoneme
Interpretation command.

• If the [:phoneme arpabet speak on] command is entered to allow phonemic
input, it is possible for DECtalk Software to enter phonemic mode
unintentionally.

q If the text being spoken contains an unexpected left bracket ([), all text
after the left bracket ([) is interpreted as phoneme text. In the following
example, ‘apple, banana, strawberry’ is interpreted as phoneme text.

[:phoneme arpabet speak on] Here is the list [apple,
banana, strawberry].

q If you forget to enter a right (]) bracket after a phonemic entry, all text
after the missing right bracket (]) is interpreted as phoneme text. In the
following example, ‘Ladies and Gentlemen’ is interpreted as phoneme text.

[:phoneme arpabet speak on Ladies and Gentlemen

• Beginning with SAPI Version 5, you can use DECtalk Software inline
commands in SAPI text buffers. However, the inline commands are not
supported and are ignored in pre-Version 5 SAPI text buffers.

 4-1

Chapter 4 —
DECtalk Software Reference Tables

DECtalk Software reference tables include:

• Phonemic Symbols Listed By Language

• Stress and Syntactic Symbols

• Phonemes Listed in Unicode Sequence

• Pitch and Duration of Tones

• Homographs

• Supported SAPI Functions

• Supported SAPI Version 5 Features

4-2

Phonemic Symbols Listed By Language

The phonemic symbol can be used to replace words that are spoken incorrectly. See
the Phoneme Interpretation command in Chapter 2 for information on how to use
phonemic symbols.

DECtalk Software provides a unified phoneme set for all supported languages,
allowing you to specify phonemes from different languages within the context of
your current language.

This section lists the phonemic symbols DECtalk Software uses for each supported
language, as follows:

• Table 4-1 Phonemic Symbols - U.S. English

• Table 4-2 Phonemic Symbols - U.K. English

• Table 4-3 Phonemic Symbols - Castilian Spanish

• Table 4-4 Phonemic Symbols - Latin American Spanish

• Table 4-5 Phonemic Symbols - German

• Table 4-6 Phonemic Symbols - French

Some dictionaries put the stress symbol after the vowel nucleus or at the start of the
syllable. DECtalk Software requires that the stress symbol appear immediately
before a syllable nucleus. Table 4-7 lists the supported stress symbols.

Phonemes can also be given duration and pitch attributes to create special effects,
such as singing. See Table 4-10 for additional information.

Note

Arpabet mode is a 2-character system. All single character symbols must be followed by
a space so that faulty translations do not occur. Consider the phonemic representation of
“whitehorse,” [* w ‘ayt hxowr s]. The letter “t” in this phonemic representation must be
followed by a space, so that it is not interpreted as part of the phonemic symbol [th] in the
representation of “whitehorse.”

Some older versions of DECtalk Software supported single characters in arpabet mode.
Application programs written for use with those versions may fail to function correctly
when used with DECtalk Software V4.6 or higher.

 4-3

Table 4-1 Phonemic Symbols - U.S. English

ASCKY DT

index

DT

internal

Example Arpa-
bet

Uni-

code

Unicode Character Name

_ 0 SIL (silence) _ U+5F Low line

i 1 US_IY bEAn iy U+69 Latin small letter I

I 2 US_IH pIt ih U+26A Latin small letter Capital I

e 3 US_EY bAY ey U+65 Latin small letter E

E 4 US_EH pEt eh U+25B Latin small letter open E

@ 5 US_AE pAt ae U+E6 Latin small letter AE

a 6 US_AA pOt aa U+251 Latin small letter Alpha

A 7 US_AY bUY ay U+61,
U+26A

Latin small letter A + Latin
small capital I

W 8 US_AW brOW aw U+61,
U+28A

Latin small letter A + Latin
small capital Upsilon

^ 9 US_AH pUtt ah U+28C Latin small letter turned V

c 10 US_AO bOUght ao U+254 Latin small letter O

o 11 US_OW nO ow U+6F,
U+28A

Latin small letter O +
Latin small letter Upsilon

O 12 US_OY bOY oy U+254,
U+26A

Latin small letter open O
+ Latin small letter capital
I

U 13 US_UH pUt uh U+28A Latin small letter Upsilon

u 14 US_UW bOOn uw U+75 Latin small letter U

R 15 US_RR anothER rr U+25A Latin small letter Schwa
with hook

Y 16 US_YU cUte yu U+6A, U+75 Latin small letter J + Latin
small letter U

x 17 US_AX About ax U+259 Latin small letter Schwa

| 18 US_IX kissEs ix U+268 Latin small letter I with
stroke

I 19 US_IR pEEr ir U+69,
U+2B4

Latin small letter I +
modifier letter small
turned R

R 20 US_ER pAIr er

a 21 US_AR bARn ar U+251,
U+2B4

Latin small letter Alpha +
modifier letter small

4-4

ASCKY DT

index

DT

internal

Example Arpa-
bet

Uni-

code

Unicode Character Name

U+2B4 turned R

c 22 US_OR bOrn or U+254,
U+2B4

Latin small letter open O
+ modifier letter small
turned R

U 23 US_UR pOOr ur U+28A,
U+2B4

Latin small letter Upsilon
+ modifier letter small
turned R

w 24 US_W Why w U+77 Latin small letter W

Y 25 US_Y Yank yx U+6A Latin small letter J

r 26 US_R Rat r U+52 Latin capital letter R

l 27 US_LL Lad l U+6C Latin small letter L

h 28 US_HX Had hx U+68 Latin small letter H

R 29 US_RX coRe rx U+279 Latin small letter turned R
with hook

l 30 US_LX untiL lx U+26B Latin small letter I with
middle tilde

m 31 US_M Mad m U+6D Latin small letter M

n 32 US_N Nat n U+6E Latin small letter N

G 33 US_NX baNG nx U+14B Latin small letter Eng

L 34 US_EL dangLe el U+6C,
U+329

Latin small letter L
combining vertical line
below

D 35 US_DZ wiDth dz U+64,
U+32F

Latin small letter D +
combining inverted breve
below

N 36 US_EN burdeN en U+6E,
U+329

Latin small letter N +
combining vertical line
below

f 37 US_F Fat f U+66 Latin small letter F

v 38 US_V Vat v U+76 Latin small letter V

T 39 US_TH THin th U+3B8 Greek small letter Theta

D 40 US_DH THen dh U+F0 Latin small letter Eth

s 41 US_S Sap s U+73 Latin small letter S

z 42 US_Z Zap z U+7A Latin small letter Z

 4-5

ASCKY DT

index

DT

internal

Example Arpa-
bet

Uni-

code

Unicode Character Name

S 43 US_SH SHeep sh U+283 Latin small letter Esh

Z 44 US_ZH meaSure zh U+292 Latin small letter Ezh

p 45 US_P Pat p U+70 Latin small letter P

b 46 US_B Bad b U+62 Latin small letter B

t 47 US_T Tack t U+74 Latin small letter T

d 48 US_D Dad d U+64 Latin small letter D

k 49 US_K Cad k U+6B Latin small letter K

g 50 US_G Game g U+67 Latin small letter G

& 51 US_DX riDer dx Internal use
only

Q 52 US_TX baTTen tx U+74, U+294 Latin small letter T + Latin
letter glottal stop

q 53 US_Q we eat q U+294 Latin letter glottal stop

C 54 US_CH CHeap ch U+2A7 Latin small letter Tesh
digraph

J 55 US_JH Jeep jh U+2A4 Latin small letter Dezh
digraph

F 56 US_DF wriTer df Internal use
only

 57 US_TZ tz Hebrew complement

 58 US_CZ cz Hebrew complement

4-6

Table 4-2 Phonemic Symbols - U.K. English

ASCKY DT

index

DT

internal

Example Arpabet

_ 0 SIL (silence) _

i 1 UK_IY bEAn iy

I 2 UK_IH pIt ih

e 3 UK_EY bAY ey

E 4 UK_EH pEt eh

@ 5 UK_AE pAt ae

a 6 UK_AA pOt aa

A 7 UK_AY bUY ay

W 8 UK_AW brOW aw

^ 9 UK_AH pUtt ah

c 10 UK_AO bOUght ao

o 11 UK_OW nO ow

O 12 UK_OY bOY oy

U 13 UK_UH pUt uh

u 14 UK_UW bOOn uw

R 15 UK_RR anothER rr

Y 16 UK_YU cUte yu

x 17 UK_AX About ax

| 18 UK_IX kissEs ix

I 19 UK_IR pEEr ir

R 20 UK_ER pAIr er

a 21 UK_AR bARn ar

c 22 UK_OR bOrn or

U 23 UK_UR pOOr ur

w 24 UK_W Why w

Y 25 UK_Y Yank yx

r 26 UK_R Rat r

l 27 UK_LL Lad l

h 28 UK_HX Had hx

 4-7

ASCKY DT

index

DT

internal

Example Arpabet

 29 UK_OH oh

l 30 UK_LX untiL lx

m 31 UK_M Mad m

n 32 UK_N Nat n

G 33 UK_NX baNG nx

L 34 UK_EL dangLe el

D 35 UK_DZ wiDth dz

N 36 UK_EN burdeN en

f 37 UK_F Fat f

v 38 UK_V Vat v

T 39 UK_TH THin th

D 40 UK_DH THen dh

s 41 UK_S Sap s

z 42 UK_Z Zap z

S 43 UK_SH SHeep sh

Z 44 UK_ZH meaSure zh

p 45 UK_P Pat p

b 46 UK_B Bad b

t 47 UK_T Tack t

d 48 UK_D Dad d

k 49 UK_K Cad k

g 50 UK_G Game g

& 51 UK_DX riDer dx

Q 52 UK_TX baTTen tx

q 53 UK_Q we eat q

C 54 UK_CH CHeap ch

J 55 UK_JH Jeep jh

F 56 UK_DF wriTer df

4-8

Table 4-3 Phonemic Symbols - Castilian Spanish

ASCKY DT

index

DT

internal

Example Arpabet

_ 0 SIL (silence) _

 1 SP_A Palabra a

 2 SP_E Leo e

 3 SP_I Hilo i

 4 SP_O Hola o

 5 SP_U Lunes u

 6 SP_WX (Rounded
dipthong
semiv.)

wx

 7 SP_YX (Unround
dipthong
semiv.)

yx

 8 SP_RR Rama rr

 9 SP_L Luna l

 10 SP_LL Calle ll

 11 SP_M Mama’ m

 12 SP_N Nana n

 13 SP_NH Munoz nh

 14 SP_F Feo f

 15 SP_S Casa s

 16 SP_J Caja j

 17 SP_TH Caza th

 18 SP_BH Haba bh

 19 SP_DH Hada dh

 20 SP_GH Haga gh

 21 SP_YH Yate
(affricate)

yh

 22 SP_P Papa’ p

 23 SP_B Barco b

 24 SP_T Tela t

 4-9

ASCKY DT

index

DT

internal

Example Arpabet

 25 SP_D Dama d

 26 SP_K Casa k

 27 SP_G Gasa g

 28 SP_CH Charco ch

 29 SP_Y Haya (fricitive) y

 30 SP_R Sara r

 31 SP_Q ~n (offglide) q

 32 SP_Z Desde z

 33 SP_W Hueso w

 34 SP_NX Mango nx

 35 SP_V Afgano v

 36 SP_IX ~n (offglide) ix

 37 SP_MX Infierno (nf) mx

 38 SP_PH Observar ph

4-10

Table 4-4 Phonemic Symbols - Latin American Spanish

ASCKY DT

index

DT

internal

Example Arpabet

_ 0 SIL (silence) _

 1 LA_A Palabra a

 2 LA_E Leo e

 3 LA_I Hilo i

 4 LA_O Hola o

 5 LA_U Lunes u

 6 LA_WX (Rounded
dipthong
semiv.)

wx

 7 LA_YX (Unround
dipthong
semiv.)

yx

 8 LA_RR Rama rr

 9 LA_L Luna l

 10 LA_LL Calle ll

 11 LA_M Mama’ m

 12 LA_N Nana n

 13 LA_NH Munoz nh

 14 LA_F Feo f

 15 LA_S Casa s

 16 LA_J Caja j

 17 LA_TH Caza th

 18 LA_BH Haba bh

 19 LA_DH Hada dh

 20 LA_GH Haga gh

 21 LA_YH Yate
(affricate)

yh

 22 LA_P Papa’ p

 23 LA_B Barco b

 24 LA_T Tela t

 4-11

ASCKY DT

index

DT

internal

Example Arpabet

 25 LA_D Dama d

 26 LA_K Casa k

 27 LA_G Gasa g

 28 LA_CH Charco ch

 29 LA_Y Haya (fricitive) y

 30 LA_R Sara r

 31 LA_Q ~n (offglide) q

 32 LA_Z Desde z

 33 LA_W Hueso w

 34 LA_NX Mango nx

 35 LA_V Afgano v

 36 LA_IX ~n (offglide) ix

 37 LA_MX Infierno (nf) mx

 38 LA_PH Observar ph

4-12

Table 4-5 Phonemic Symbols - German

ASCKY DT

index

DT

internal

Example Arpabet

_ 0 SIL (silence) _

 1 GR_A mAnn a

 2 GR_E Englisch e

 3 GR_AE hAEtte ae

 4 GR_EX gabE ex

 5 GR_I mIt i

 6 GR_O pOst o

 7 GR_OE kOEnnen oe

 8 GR_U mUnd u

 9 GR_UE lUEcke ue

 10 GR_AH sAgen ah

 11 GR_EH gEben eh

 12 GR_AZ wAEhlen az

 13 GR_IH lIEb ih

 14 GR_OH mOnd oh

 15 GR_OZ mOEgen oz

 16 GR_UH hUt uh

 17 GR_UZ hUEten uz

 18 GR_EI klEId ei

 19 GR_AU hAUs au

 20 GR_EU hEUte eu

 21 GR_AN pENsion an

 22 GR_IM tIMbre im

 23 GR_UM parfUM um

 24 GR_ON fONdue on

 25 GR_J Ja j

 26 GR_L Luft l

 27 GR_RR Rund rr

 28 GR_R waR r

 4-13

ASCKY DT

index

DT

internal

Example Arpabet

 29 GR_H Hut h

 30 GR_M Mut m

 31 GR_N NeiN n

 32 GR_NG riNG ng

 33 GR_EL nabEL el

 34 GR_EM grossEM em

 35 GR_EN badEN en

 36 GR_F Fall f

 37 GR_V Was v

 38 GR_S meSSen s

 39 GR_Z doSe z

 40 GR_SH SCHule sh

 41 GR_ZH Genie zh

 42 GR_CH niCHt ch

 43 GR_KH noCH kh

 44 GR_P Park p

 45 GR_B Ball b

 46 GR_T Turm t

 47 GR_D Dort d

 48 GR_K Kalt k

 49 GR_G Gast g

 50 GR_Q Be_amtet q

 51 GR_PF PFerd pf

 52 GR_TS Zahl ts

 53 GR_DJ Gin dj

 54 GR_TJ maTSCH tj

 55 GR_KS Extra ks

4-14

Table 4-6 Phonemic Symbols - French

ASCKY DT

index

DT

internal

Example Arpabet

_ 0 SIL (silence) _

 1 FR_A a

 2 FR_A3 a3

 3 FR_E2 e2

 4 FR_AU au

 5 FR_E e

 6 FR_E1 e1

 7 FR_EU eu

 8 FR_I i

 9 FR_O o

 10 FR_O6 o6

 11 FR_OU ou

 12 FR_U u

 13 FR_AN an

 14 FR_IN in

 15 FR_ON on

 16 FR_UN un

 17 FR_AP ap

 18 FR_L l

 19 FR_R r

 20 FR_W w

 21 FR_WU wu

 22 FR_Y y

 23 FR_CH ch

 24 FR_F f

 25 FR_J j

 26 FR_RX rx

 27 FR_S s

 28 FR_V v

 4-15

ASCKY DT

index

DT

internal

Example Arpabet

 29 FR_Z z

 30 FR_B b

 31 FR_D d

 32 FR_G g

 33 FR_K k

 34 FR_P p

 35 FR_T t

 36 FR_GN gn

 37 FR_M m

 38 FR_N n

 39 FR_NG ng

 40 FR_SG sg

4-16

Stress and Syntactic Symbols

Table 4-7 and Table 4-8 list the stress and syntactic symbols supported by DECtalk
Software. Phoneme interpretation must be turned on for the stress and syntactic
symbols to work. Refer to the Phoneme Interpretation command description in
Chapter 2 for more information.

Table 4-7 Stress Symbols

Symbol Name Indicates Unicode

 ’ Apostrophe primary stress U+27

‘ Grave accent secondary stress U+60

" Quotation mark emphatic stress U+22

 / Slash pitch rise U+2F

\ Backslash pitch fall U+5C

Table 4-8 Syntactic Symbols

Symbol Name Indicates Unicode

- Hyphen syllable boundary U+2D

* Asterisk morpheme boundary U+2A

Number sign compound nouns U+23

(Open parenthesis beginning of
prepositional phrase

U+28

) Close parenthesis beginning of a verb
phrase

U+29

, Comma clause boundaries U+2C

. Period period U+2E

? Question mark question mark U+2F

 ! Exclamation point exclamation point U+21

+ Plus sign new paragraph U+2B

 Space word boundary U+20

 4-17

Phonemes Listed in Unicode Sequence

Table 4-9 U.S. English Phonemes in Unicode Sequence

Unicode Unicode Character
Name

ASCKY DT

index

DT

internal

Example Arpabet

U+20 Space Word boundary <space>

U+21 Exclamation point

U+22 Quotation mark “ “Hello” “

U+23 Number sign #

U+27 Apostrophe “ r’ehd

U+28 Left parenthesis (

U+29 Right parenthesis)

U+2A Asterisk *

U+2B Plus sign +

U+2C Comma ,

U+2D Hyphen -

U+2E Full stop . Syllable break -

U+2F Solidus /

U+3F Question mark ?

U+52 Latin capital letter R R 26 US_R Rat r

U+5C Reverse solidus \

U+5F Low line _ 0 US_SIL (silence) _

U+61,
U+26A

Latin small letter A +
Latin small capital I

A 7 US_AY bUY ay

U+61,
U+28A

Latin small letter A +
Latin small capital I

W 8 US_AW brOW aw

U+62 Latin small letter B b 46 US_B Bad b

U+64,
U+32F

Latin small letter D +
combining inverted
breve below

D 35 US_DZ WiDth dz

U+64 Latin small letter D d 48 US_D Dad d

U+65 Latin small letter E e 3 US_EY bAY ey

U+66 Latin small letter F f 37 US_F Fat f

4-18

Unicode Unicode Character
Name

ASCKY DT

index

DT

internal

Example Arpabet

U+67 Latin small letter G g 50 US_G Game g

U+68 Latin small letter H h 28 US_HX Had hx

U+69,
U+2B4

Latin small letter I +
modifier letter small
turned R

I 19 US_IR pEEr ir

U+69 Latin small letter I i 1 US_IY bEAn iy

U+6A,
U+75

Latin small letter J +
Latin small letter U

Y 16 US_YU cUte yu

U+6A Latin small letter J Y 25 US_Y Yank yx

U+6B Latin small letter K k 49 US_K Cad k

U+6C,
U+329

Latin small letter L +
combining vertical line
below

L 34 US_EL dangLe el

U+6C Latin small letter L l 27 US_LL Lad l

U+6D Latin small letter M m 31 US_M Mad m

U+6E,
U+329

Latin small letter N +
combining vertical line
below

N 36 US_EN burdeN en

U+6E Latin small letter N n 32 US_N Nat n

U+6F,
U+28A

Latin small letter O +
Latin small letter
upsilon

o 11 US_OW nO ow

U+70 Latin small letter P p 45 US_P Pat p

U+73 Latin small letter S s 41 US_S Sap s

U+74 Latin small letter T t 47 US_T Tack t

U+74,
U+294

Latin small letter T +
Latin letter glottal stop

Q 52 US_TX baTTen tx

U+75 Latin small letter U u 14 US_UW bOOn uw

U+76 Latin small letter V v 38 US_V Vat v

U+77 Latin small letter W w 24 US_W Why w

U+7A Latin small letter Z z 42 US_Z Zap z

U+E6 Latin small letter AE @ 5 US_AE pAt ae

U+F0 Latin small letter Eth D 40 US_DH THen dh

 4-19

Unicode Unicode Character
Name

ASCKY DT

index

DT

internal

Example Arpabet

U+14B Latin small letter Eng G 33 US_NX baNG nx

U+251,
U+2B4

Latin small letter Alpha
+ modifier letter small
turned R

a 21 US_AR bARn ar

U+251 Latin small letter Alpha a 6 US_AA pOt aa

U+254,
U+26A

Latin small letter open
O + Latin small letter
capital I

O 12 US_OY bOY oy

U+254,
U+2B4

Latin small letter open
O + modifier letter
small turned R

c 22 US_OR bOrn or

U+254 Latin small letter O c 10 US_AO bOUght ao

U+259 Latin small letter Schwa x 17 US_AX About ax

U+25A Latin small letter Schwa
with hook

R 15 US_RR anothER rr

U+25B Latin small letter open
E

E 4 US_EH pEt eh

U+268 Latin small letter I with
stroke

| 18 US_IX kissEs ix

U+26A Latin small letter
Capital I

I 2 US_IH pIt ih

U+26B Latin small letter I with
middle tilde

l 30 US_LX untiL lx

U+279 Latin small letter turned
R with hook

R 29 US_RX coRe rx

U+283 Latin small letter Esh S 43 US_SH SHeep sh

U+28A,
U+2B4

Latin small letter
Upsilon + modifier letter
small turned R

U 23 US_UR pOOr ur

U+28A Latin small letter
Upsilon

U 13 US_UH pUt uh

U+28C Latin small letter turned
V

^ 9 US_AH pUtt ah

U+292 Latin small letter Ezh Z 44 US_ZH meaSure zh

U+294 Latin letter glottal stop q 53 US_Q we eat q

4-20

Unicode Unicode Character
Name

ASCKY DT

index

DT

internal

Example Arpabet

U+2A4 Latin small letter Dezh
digraph

J 55 US_JH Jeep jh

U+2A7 Latin small letter Tesh
digraph

C 54 US_CH CHeap ch

U+2C8 Modifier letter vertical
line

‘

U+28CC Modifier letter low
vertical line

`

U+3B8 Greek small letter
Theta

T 39 US_TH THin th

 4-21

Pitch and Duration of Tones

DECtalk Software can be used to sing songs or make various sounds associated with
singing and musical tones. Table 4-11 provides the pitch numbers, associated notes,
and frequencies you need to code a phonemic sequence to produce musical sounds.

Figure 4-1 is the code for the song, “Happy Birthday.” The command syntax for
coding musical sequences is found in Table 4-10. You can use the phonemic table
for your language (see Table 4-1 through Table 4-6) to decode the phoneme
symbols.

Table 4-10 Phoneme Syntax for Singing

SYNTAX: [phoneme <duration, pitch number>]

OPTIONS: none

PARAMETERS: duration Tone duration in milliseconds.

 pitch number Pitch number from

DEFAULT: none

EXAMPLES: See Figure 4-1

Figure 4-1 DECtalk Software Singing “Happy Birthday”
[:phoneme arpabet speak on]
[hxae<300,10>piy<300,10> brr<600,12>th<100>dey<600,10>
tuw<600,15> yu<1200,14>_<120>]
[hxae<300,10>piy<300,10> brr<600,12>th<100>dey<600,10>
tuw<600,17> yu<1200,15>_<120>]
[hxae<300,10>piy<300,10> brr<600,22>th<100>dey<600,19>
dih<600,15>r deh<600,14>ktao<600,12>k_<120>_<120>]
[hxae<300,20>piy<300,20> brr<600,19>th<100>dey<600,15>
tuw<600,17> yu<1200,15>]

4-22

Table 4-11 Tone Table

Pitch Number Note Pitch Vocal Ranges

1 C2 65

2 C# 69

3 D 73

4 D# 77

5 E 82 B

6 F 87 A

7 F# 92 S

8 G 98 S B

9 G# 103 A

10 A 110 R

11 A# 116 I

12 B 123 T

13 C3 130 O T

14 C# 138 N E

15 D 146 E N

16 D# 155 O

17 E 164 R

18 F 174 A

19 F# 185 L

20 G 196 T

21 G# 207 O

22 A 220

23 A# 233

24 B 247 S

25 C4 261 O

26 C# 277 P

27 D 293 R

28 D# 311 A

29 E 329 N

30 F 348 O

31 F# 370

32 G 392

33 G# 415

34 A 440

35 A# 466

36 B 494

37 C5 523

 4-23

Homographs

Homographs are two or more words that have the same spelling but are pronounced
differently. Homographs are often different in terms of which syllable is accented.
For example, if permit is a noun, the accent is on the first syllable (permit); if,
however, the word is used as a verb, the accent is on the second syllable (permit).
This distinction often makes a great deal of difference in understanding DECtalk
when it is speaking such words in connected discourse.

The default pronunciation is the more frequent form. In the event the alternate
pronunciation is needed, you can insert the correct phonetics from the homograph
index below.

Use the [:pronounce alternate] command before a word to obtain an alternative
pronunciation for the word. For example, the primary pronunciation of the word bass
is b’eys, as in bass guitar, while the alternate pronunciation, denoted by [:pronounce
alternate], is b’aes, as in the fish, bass.

This section lists the homograph phonetics in alphabetical groups, as follows:

• Table 4-12 Homograph Phonetics - (A)

• Table 4-13 Homograph Phonetics - (B-C)

• Table 4-14 Homograph Phonetics - (D-G)

• Table 4-15 Homograph Phonetics - (I-L)

• Table 4-16 Homograph Phonetics - (M-P)

• Table 4-17 Homograph Phonetics - (R)

• Table 4-18 Homograph Phonetics - (S-W)

4-24

Table 4-12 Homograph Phonetics - (A)

Spelling Primary Alternate

abstract ’ aeb s t r aek t ae b s t r ’ aek t

abuse axb y ’ u z axb y ’ u s

addict ax d ’ ihk t ’ ae d ihk t

advocate ’ aed v axk eyt ’ aed v ax k axt

affix ’ aef ihk s axf ’ ihk s

ally ’ ael ay axl ’ ay

alternate ’ aol t rrn ax t ’ ao l t rrn ey t

animate ’ aen ihm eyt ’aen ih m ax t

annex ’ aen ehk s axn ’ ehk s

appropriate axp r ’ owp r iyaxt axp r ’ owp r iy eyt

arithmetic axr ’ ihthm axt ixk aer ixthm ’ eht ixk

articulate aar t ’ ihk yxel eyt aar t ’ ih k yxel axt

associate axs ’ owshiyeyt axs ’ owshiyaxt

attribute axt r ’ ihbyut ’ aet r ixbyut

august ’ aog axs t aog ’ ahs t

 4-25

Table 4-13 Homograph Phonetics - (B-C)

Spelling Primary Alternate

bass b ’ eys b ’ aes

baton b axt ’ aon b ’ aet ax n

close k l ’ owz k l ’ ows

combat k axm b ’ aet k ’ aam b ae t

combine k axm b ’ ayn k ’ aam b ayn

compact k axm p ’ aek t k ’ aam pae k t

complex k ’ aam p l ehk s k axm p l ’ ehk s

compound k ’ aam paw n d k axm p ’ aw n d

compress k ax m p r ’ ehs k ’ aam p r ehs

concert k ’ aan s rrt k axn s ’ rrt

conduct k axn d ’ ahk t k ’ aa n d ahk t

confederate k axn f ’ ‘ehd rrixt
rreyt

k axn f ’ ehd rriht

confine k axn f ’ ayn k ’ aan f ayn

conflict k ’ aan f l ixk t k axn f l ’ eyk t

conglomerate k axnxg l ’ aam rixt k axnxg l ’ aam rreyt

console k ’ aan s owl k axn s ’ owl

construct k axn s t r ’ ahk t k ’ aan s t r axk t

content k ’ aan t ehn t k axn t ’ ehn t

contest k ’ aan t ehs t k axn t ’ ehs t

contract k ’ aan t rae k t k axn t r ’ aek t

contrast k ’ aan t r aes t k axn t r ’ aes t

converse k ’ aan v rrs k axn v ’ rrs

convert k axn v ’ rrt k ’ aan v rrt

convict kax n v ’ ihk t k ’ aan vih k t

coordinate k ow’ aor d en eyt kow‘ aor d ixn axt

4-26

Table 4-14 Homograph Phonetics - (D-G)

Spelling Primary Alternate

decrease d iyk r ’ iys d ’ iyk r iys

defect d ax f ’ ehk t d ’ iyf ehk t

delegate d ’ ehl ixg axt d ’ ehl ixg ‘ ey t

deliberate d axl ’ ihb rraxt d axl ’ ihb rreyt

desert d ’ ehz rrt d ixz ’ rrt

desolate d ’ ehs el ixt d ’ eh sel yet

Diffuse dix f ’ yuw s d ix f ’ yuw z

digest d ’ ayjhehs t d ayjh’ ehs t

discharge d ixs ch’ arjh d ’ his charjh

discount d ’ ihs kaw n t d his k ’ awn t

dove d ’ owv d ’ ahv

duplicate d ’ uwp l ixk eyt d ’ uwp lixk axt

elaborate axl ’ aeb rraxt axl ’ aeb rreyt

estimate ’ ehs tix m eyt ’ ehs tix m axt

excerpt ’ehksrrpt ehks’rrpt

excuse ixk s k ‘ yuz eh k s k ‘yus

expatriate ehk s p ' yet riy axt ehk s p ' ey t riieyt

exploit ixk s p l ' oyt ' ehk s p loy t

export ehk s p ' ort 'ehk s por t

extract ehk s t r ' aek t 'eh k s t raek t

ferment frr m ' ehn t f ' rrm eh n t

frequent f r ' iyk wix n t f riy k w ' eyn t

geminate jh ' ehm ixn axt jh ' ehm ixn eyt

graduate g r ' aejhuweyt g r ' aejhuwaxt

 4-27

Table 4-15 Homograph Phonetics - (I-L)

Spelling Primary Alternate

impact ’ ihm paek t ixm p ’ aek t

implant ihm p l ’ aen t ’ ihm p l aen t

import ’ ihm p ort ihm p ’ ort

imprint ’ ihm p r ihnt ihm p r ’ ihn t

incense ixn s ’ ehn s ’ ihn s ehn s

incline ixn k l ’ ayn ’ ihn k l ayn

increase ihn k r ’ iys ’ ihn k r iys

insert ihn s ’ rrt ’ ihn s rrt

insult ihn s ’ ahl t ’ ihn s axl t

interchange ’ ihn t rr ch eyn jh ihn t rr ch ’ eyn jh

intimate ’ ihn t axm axt ’ ihn t axm eyt

invalid ixn v ’ ael ixd ’ ihn v axl ixd

just jh ixs t jh ’ ahs t

lead l ’ iyd l ’ ehd

live l ’ ihv l ’ ayv

4-28

Table 4-16 Homograph Phonetics - (M-P)

Spelling Primary Alternate

minute m ’ ih nix t may n ’ uwt

miscount m ’ ihs kaw n t mih s k ’ awn t

misprint m ’ ihs p r in t mih s pr ’ int

misuse mix s ’ yuz mix s ’ yus

moderate m ’ aad rraxt m ’ aad rreyt

object ’ aa b jheht ax b jh ’ ehkt

overrun ’ow v rr rahn ow v r rr’ahn

perfect p ’ rr f ixk t prrf ’ ehk t

permit prr m ’ iht p ’ rr miht

pervert p rrv ’ rrt p ’ rrv rrt

polish p ’ aal hish p ’ owl ixsh

postulate p ’ aas cheleyt p ’ aas chelaxt

predicate p r ’ ehd ixk eyt p r ’ ehd ixk axt

predominate p r ixd ’ aam ixn eyt p r ixd ’ aam ixn axt

present p riy z ’ ehn t p r ’ ehz axn t

proceed p r axs ’ iyd p r ’ ows iyd

produce p r axd ’ uws p r ’ aad uws

progress p r ’ aag r ehs p rax g r ’ eh s

project p r ’ aajh ehk t p r axjh ’ ehk t

protest p r ’ owt ehs t p r owt ’ ehs t

 4-29

Table 4-17 Homograph Phonetics - (R)

Spelling Primary Alternate

read r ’ iyd r ’ ehd

reading r ’ iyd ixnx r ’ ehd ixnx

rebel r ’ ehb el rix b ’ ehl

recall rix k ’ aol r ’ iyk aol

recap riy k ’ aep r ’ iyk aep

recess r ’ iys ehs r iys ’ ehs

record r ’ ehk rrd r ixk ’ ord

recount r iyk ’ awn t r ’ iyk awn t

refill r ’ iyf ihl r iyf ’ ihl

refresh r iyf r ’ ehsh r ’ iyf r ehsh

refund r iyf ’ ahn d r ’ iyf ahn d

refuse r ixf ’ yuz r ’ ehf yus

reject rixjh’ehkt r’iyjhehkt

relapse r ’ iyl aep s r ixl ’ aep s

relay r ’ iyl ey r ixl ’ ey

remake r ’ iym eyk r iym ’ eyk

rerun r ’ iy * rahn r iy * r ’ ahn

research r ’ iys rrch r iys ’ rrch

resume r iy | z ’ uwm r ’ ehz axm ey

retake r iyt ’ eyk r ’ iyt eyk

rewrite r iy r ’ ayt r ’ iy * r ayt

4-30

Table 4-18 Homograph Phonetics - (S-W)

Spelling Primary Alternate

segment s ’ ehg m ixn t s ehg m ’ ehn t

separate s ’ ehp axr eyt s ’ ehp axr axt

sow s ’ow s ’aw

subject s ’ ahb jhehk t s axb jh ’ ehk t

sublet s axb l ’ eht s axb l ’ eht

subordinate s axb ’ ord enaxt s axb ’ ord eneyt

survey s ’ rr vey s rr v ’ ey

suspect s ’ ahs peh k t s ax s p ’ eh k t

syndicate s ’ ihn dix kix t s ’ ihn dix key t

tear t ’ er t ’ ir

torment t orm ’ ehn t t ’ orm ehn t

transform t r aen s f ’ orm t r ’ aen s f orm

transplant t r aen s p l ’ aen t t r ’ aen s p l aen t

transport t r aen s p ’ ort t r ’ aen s p ort

upset axp s ’ eht ’ ah p she t

use y ’ uwz y ’ uws

wind w ’ ihn d w ’ ayn d

wound w ’ awn d w ’ uwn d

 4-31

Supported SAPI Functions (Windows 95/98/ME/NT/2000 Only)

Table 4-19 shows the Microsoft Speech API (SAPI) functions that DECtalk
Software supports for Windows systems. See the Microsoft documentation
and the Microsoft web site for more information on the SAPI functions.

Table 4-19 Supported Functions of the Microsoft Speech API

SAPI Interface Supported Functions Functions With
Limited Support

Unsupported Functions

ITTSAttributes • SpeedGet
• SpeedSet
• VolumeGet
• VolumeSet
• PitchGet
• PitchSet

• RealtimeGet
(always returns 1)

• RealTimeSet
(always returns 1)

ITTSBufNotifySink • TextDataStart
• TextDataDone
• BookMarks
• WordPosition

ITTSCentral • AudioPause
• AudioReset
• AudioResume
• ModeGet
• PosnGet
• TextData

 \com=string\
 \emp\
 \mrk=number\
 \pau=number\
 \pit=number\
 \rst\
 \spd=number\
 \vol=number\
 \prn=string=string\

• Register
• Unregister
• Inject
• ToFileTime

 • TextData
\chr=string[[,string…]]\
\ctx=string\
\eng[[;GUID]]:command\
\pro=number\
\prt=string\
\vce=charact=value
 [[,charact=value…]]\

• Phoneme

ITTSDialogs All functions

ITTSEnum All functions

ITTSFind None All functions

IlexPronounce None All functions

ITTSNotifySink • AudioStart
• AudioStop

AttribChanged

Iaudio All functions

4-32

SAPI Interface Supported Functions Functions With
Limited Support

Unsupported Functions

IaudioDest All functions

IaudioDestNotify All functions

IaudioSourceNotifySink None All functions

SAPI Notes

• DECtalk Software for Windows CE does not support SAPI functions.

• SAPI tags embedded within a word (for example, th\mrk=1\is) are not supported. DECtalk does not
hang, but it splits the word apart.

• The DECtalk SAPI interfaces return status indicating support for VolumeSet and VolumeGet.
However, if the underlying audio-file destination object passed to the synthesizer does not support the
LevelSet and LevelGet functions, DECtalk returns the status for handling a VolumeSet or
VolumeGet call. The standard audio-file destination object returns E_NOTIMPL in this case.

• Both the ANSI and the UNICODE versions are supported, where applicable, unless otherwise noted
in this table.

• Only the UNICODE version of TextData with CHARSET_IPAPHONETIC is supported.

• All dialog boxes that SAPI defines use English, even if the DECtalk synthesizer is running in another
language, such as German.

• Beginning with SAPI Version 5, you can use DECtalk Software inline commands in SAPI text buffers.
However, the inline commands are not supported and are ignored in pre-Version 5 SAPI text buffers.

 4-33

Supported SAPI Version 5 Features (Windows 98/ME/NT/2000 Only)

Table 4-20 shows the Microsoft Speech API (SAPI) Version 5 features that
DECtalk Software supports for Windows systems. See the Microsoft
documentation and the Microsoft web site for more information on the SAPI
Version 5 features.

Table 4-20 Supported Features of the Microsoft Speech API, Version 5

SAPI Version 5 Feature Supported Functions

ISpTTSEngine • Speak
• Skip
• GetOutputFormat
• SetRate
• SetVolume

Eventing SAPI V5 required events

TTS XML Markup • Bookmark
• Silence
• Spell
• Pronounce
• Rate
• Volume
• Pitch

Real Time Rate/Volume • Real time rate change (takes effect at the beginning
of the next clause)

• Real time volume change

Audio State Tests • Purge Before Speak
• Speak Pause Stop
• Speak Destroy

Lexicon Tests • User lexicon test
• Application lexicon test

Multiple Instance Tests • Multiple instance test
• Multiple instance with shared voice test

Emph All functions

Phoneme & Viseme Events All functions

PartOfSp All functions

SAPI V5 Notes

• DECtalk Software for Windows currently supports SAPI Version 5 functions for
Windows 98, Windows ME, Windows NT, and Windows 2000; not for Windows 95
or Windows CE.

• SAPI Version 5 support currently is for U.S. English only.

4-34

• The Context feature currently is not supported. DECtalk accepts the context tags
but does not use them.

• Beginning with SAPI Version 5, you can use DECtalk Software inline commands in
SAPI text buffers. For example, you can access a command such as [:tone
500 300] using an XML tag such as <dectalk tone 500 300>.

• You can use DECtalk Software phonemes in SAPI text buffers. For example:
<dectalk phon arpa on][hx’ ehl ow][:phon arpa off> . With
DECtalk’s unified phoneme set, you can specify phonemes from different
languages within the context of your current language.

 5-1

Chapter 5 —
Customizing a DECtalk Software

Voice

The DECtalk Software built-in voices provide an adequate selection for most
applications. However, if you have a special application requiring a monotone or
unusual voice, you can use the Design Voice command to modify the options
provided in this section to design your own voice. For information on all other
commands, refer to Chapters 2 and 3.

Topics Include:

• Design Voice Command [:dv]

• Definitions of DECtalk Software Voices

• Changing Gender and Head Size

• Changing Voice Quality

• Changing Pitch and Intonation

• Changing Relative Gains and Avoiding Overloads

• Saving Changes as Val’s Voice

• Summary of Design Voice Options

5-2

Design Voice [:dv]

The nine built-in voices of DECtalk Software are distinguished from one another by
a large set of speaker-definition options. Note that there is a tenth voice, called Val.
Val is initialized with the same voice as Paul, but can be used to save voice changes.
Unlike the nine built-in voices that can be modified but not saved, Val can be used to
store voice changes during a DECtalk Software session.

DECtalk Software supports many speaker-definition options that can be modified.
However, please be aware that approximating all the variations that can characterize
a speaker -- sex, age, head size and shape, larynx size and behavior, pitch range,
pitch and timing habits, dialect, and emotional state – can be very time-consuming

The Design Voice [:dv] command introduces the speaker-definition options and
parameters that can be entered as a string or one at a time.

The following sections discuss speech production, acoustics, and perception. Some
of the information is relatively technical, but the examples should make it possible
for all developers to modify any option effectively and listen to the results.

Table 5-1 [:dv] Command Options

SYNTAX: [:dv XX YY]

OPTIONS: ap Average pitch, in Hz

 as Assertiveness, in %

 b4 Fourth formant bandwidth, in Hz

 b5 Fifth formant bandwidth, in Hz

 bf Baseline fall, in Hz

 br Breathiness, in decibels (dB)

 f4 Fourth formant resonance frequency, in Hz

 f5 Fifth formant resonance frequency, in Hz

 g1 Gain of cascade formant resonator 1, in dB

 g2 Gain of cascade formant resonator 2, in dB

 g3 Gain of cascade formant resonator 3, in dB

 g4 Gain of cascade formant resonator 4, in dB

 g5 Loudness of the voice, in dB

 gf Gain of frication source, in dB

 gh Gain of aspiration source, in dB

 gn Gain of nasalization, in dB

 5-3

 gv Gain of voicing source, in dB

 hr Hat rise, in Hz

 hs Head size, in %

 la Laryngealization, in %

 lx Lax breathiness, in %

 nf Number of fixed samples of open glottis

 pr Pitch range, in %

 qu Quickness, in %

 ri Richness, in %

 sm Smoothness, in %

 sr Stress rise, in Hz

 sx Sex 1 (male) or 0 (female)

 save Save the current speaker-definition options as
Val’s voice.

PARAMETERS: See the individual options for detailed information about
valid parameter values

EXAMPLES: [:np][:dv ap 100] Change Paul’s average pitch to be 100.

5-4

Definitions of DECtalk Software Voices

Table 5-2 Speaker Definitions for All DECtalk Software Voices

Param Paul Harry Frank Dennis Betty Ursula Wendy Rita Kit

ap 122 89 155 110 208 240 200 106 306

as 100 100 65 100 35 100 50 65 65

b4 260 200 280 240 260 260 400 250 2048

b5 330 240 300 280 2048 2048 2048 2048 2048

bf 18 9 9 9 0 8 0 0 0

br 0 0 50 38 0 0 55 46 47

f4 3300 3300 3650 3200 4450 4450 4500 4000 2500

f5 3650 3850 4200 3600 2500 2500 2500 2500 2500

g1 68 71 63 75 69 67 69 69 69

g2 60 60 58 60 65 65 62 72 69

g3 48 52 56 52 50 51 53 48 52

g4 64 62 66 61 56 58 55 54 50

g5 86 81 86 84 81 80 83 83 73

gf 70 70 68 68 72 70 70 72 72

gh 70 70 68 68 70 70 68 70 70

gn 74 73 75 76 72 80 75 73 71

gv 65 65 63 63 65 65 51 65 65

hr 18 20 20 20 14 20 20 20 20

hs 100 115 90 105 100 95 100 95 80

la 0 0 5 0 0 0 0 4 0

lx 0 0 50 70 80 50 80 0 75

nf 0 10 0 10 0 10 10 0 0

pr 100 80 90 135 240 135 175 80 210

qu 40 10 0 50 55 30 10 30 50

ri 70 86 40 0 40 100 0 20 40

sm 3 12 46 100 4 60 100 24 5

sr 32 30 22 22 20 32 22 32 22

sx 1 1 1 1 0 0 0 0 0

 5-5

Changing Gender and Head Size

Six speaker-definition options control the size and shape of the head. These options
are listed in Table 5-3.

Table 5-3 Head Size and Shape Options

sx Sex 1 (male) or 0 (female)

hs Head size, in %

f4 Fourth formant resonance frequency, in Hz

f5 Fifth formant resonance frequency, in Hz

b4 Fourth formant bandwidth, in Hz

b5 Fifth formant bandwidth, in Hz

Sex, sx

Male and female voices differ in many ways, including head size, pharynx length,
larynx mass, and speaking habits such as degree of breathiness, liveliness of pitch,
choice of articulatory target values, and speed of articulation. Some of these
differences are under the control of a single option, sx, the sex of the speaker.
Speakers Paul, Harry, Frank, and Dennis are male (sx = 1), while speakers Betty,
Rita, Ursula, Wendy, and Kit are female (sx = 0). Actually, Kit can be male or
female because children of both sexes younger than 10 years old have similar voices.

Changing the Sex (sx) option causes DECtalk Software to access a different (male or
female) table of target values for formant frequencies, bandwidths, and source
amplitudes. The male and female tables are patterned after two individuals who were
judged to have pleasant, intelligible voices. The built-in voices of DECtalk Software
are simply scaled transformations of Paul and Betty, the two basic voices.

You can change the sex of any DECtalk Software voice by making the voice current
and then modifying the sx option. For example, the following command gives Paul
some of the speaking characteristics of a woman. (The sx option does not change the
average pitch or breathiness, so a peculiar combination of simultaneous male and
female traits results from this sx change.)

[:np][:dv sx 0] Am I a man or woman?

The sx option can also be specified as m or f with the commands [:dv sx m] or [:dv
sx f].

5-6

Note

If you change the sex of the voice, some phonemes might cause DECtalk Software’s
filters to overload, producing a squawk. The modification of certain options such as f4, f5,
and g1 can help to correct this problem.

Head Size, hs

The Head size (hs) option is specified as the average size for an adult man (if sx = 1)
or an adult woman (if sx = 0). A head size of 100% is normal or average for a given
sex, but people can differ significantly in this characteristic. Head size has a strong
influence on a person’s voice. Large musical instruments produce low notes, and
humans with large heads tend to have low, resonant voices. For example, to make
Paul sound like a larger man with a 15% longer vocal tract (and formant frequencies
that are scaled down by a factor of about 0.85%), use the following command:

[:np][:dv hs 115] Do I sound more like huge Harry this way?

Head size is one of the best variables to use if you want to make dramatic voice
changes. For example, Paul has a head size of 100, while Harry’s deep voice is
caused in part by a head-size change to 115, or 15% greater than normal. Decreasing
head size produces a higher voice, such as in a child or adolescent. Extreme changes
in head size, as in the following examples, are somewhat difficult to understand.

[:nh][:dv hs 135] Do I have a swelled head?

[:nk] I am about 10 years old.

[:nk][:dv hs 65] Do I sound like a six year old?

Note

Extreme changes in head size can cause overloads, as well as difficulties in
understanding the speech. The modification of certain options such as f4, f5, and g1 can
help to correct this problem.

Higher Formants, f4, f5, b4, and b5

A male voice typically has five prominent resonant peaks in the spectrum (over the
range from 0 to 5 kHz), a female voice typically has only four (because of a smaller
head size), and a child has three. If fourth and fifth formant resonances exist for a
specific voice, they are fixed in frequency and bandwidth characteristics. These
characteristics are specified in Hz by the options f4, f5, b4, and b5.

If a higher formant does not exist, the frequency and bandwidth of the speaker
definition are set to special values that cause the resonance to disappear. To make a
resonance disappear, the frequency is set to above 5500 Hz and the bandwidth is set

 5-7

to 5500 Hz. (This disables the formant filter.) This is what has been done to the
fourth and fifth formants for Kit.

The permitted values for the f4 and f5 options have fairly complicated restrictions.
Violating these restrictions can cause overloads and squawks. The following
restrictions apply to cases where a higher formant exists:

• The f5 option must be at least 300 Hz higher than f4.

• If sx is 1 (male), f4 must be at least 3250 Hz.

• If sx is 0 (female), f4 must be at least 3700 Hz.

• If hs is not 100, the preceding values should be multiplied by (hs / 100).

These higher formants produce peaks in the spectrum that become more prominent if
the b4 and b5 options are smaller, and if the f4 and f5 options are closer together.
The limits placed on the b4 and b5 options should ensure that no problems occur.
However, smaller values for bandwidths may produce an overload in the synthesizer.
You can correct these overloads by increasing the bandwidths or by changing the
gain control, g1.

5-8

Changing Voice Quality

Six speaker-definition options control aspects of the output of the larynx, which, in
turn, control voice quality. These options are listed in Table 5-4.

Table 5-4 Voice Quality Options

br Breathiness, in decibels (dB)

lx Lax breathiness, in %

sm Smoothness, in %

ri Richness, in %

nf Number of fixed samples of open glottis

la Laryngealization, in %

Breathiness, br

Some voices can be characterized as breathy. The vocal folds vibrate to generate
voicing and breath noise simultaneously. Breathiness is a characteristic of many
female voices, but it is also common under certain circumstances for male voices.

The range of the Breathiness (br) option is from 0 dB (no breathiness) to 70 dB
(strong breathiness). By experimenting, you can learn what intermediate values
sound like. For example, to turn Paul into a breathy, whispering speaker, use the
following commands:

[:np][:dv br 55 gv 56] Do I sound more like Dennis now?

This voice is not as loud as the others, because of the simultaneous decrease in the
gain of voicing, gv, but it is intelligible and human sounding.

Lax Breathiness, lx

The br option creates simultaneous breathiness whenever voicing is turned on.
Another type of breathiness occurs only at the ends of sentences and when going
from voiced to voiceless sounds. This type of breathiness is controlled by the Lax
breathiness (lx) option in percentage values.

A nonbreathy, tense voice would have the lx option set to 0, while a maximally
breathy, lax voice would be set to 100. The difference between these two voices is
not great, but you can hear it if you listen closely.

 5-9

Smoothness, sm

The Smoothness (sm) option refers to vocal fold vibrations. The vocal folds meet at
the midline, as they do in normal voicing, but they do not slam together forcefully to
create a very sudden cessation of airflow.

DECtalk Software uses a variable-cutoff, gradual low-pass filter to model changes to
smoothness. The range of sm is from 0% (least smooth and most brilliant) to 100%
(most smooth and least brilliant). The voicing source spectrum is tilted so that energy
at higher frequencies is attenuated by as much as 30 dB when smoothness is set to
the maximum but is not attenuated at all when smoothness is set to 0.

Professional singing voices that are trained to sing above an orchestra are usually
brilliant, while anyone who talks softly becomes breathy and smooth. To synthesize
a breathy voice, having the sm option set to 50 or more is good. Changes to
smoothness do not have a great effect on perceived voice quality.

Richness, ri

The Richness (ri) option is similar to smoothness and brilliance except that the
spectral change occurs at lower frequencies. The spectral change difference is
because of a different physiological mechanism. Brilliant, rich voices carry well and
are more intelligible in noisy environments, while smooth, soft voices sound more
friendly. For example, the following command produces a soft, smooth version of
Paul’s voice:

[:np][:dv ri 0 sm 70] Do I sound more mellow?

The following command produces a maximally rich and brilliant (forceful) voice:

[:np][:dv ri 90 sm 0] Do I sound more forceful?

Smoothness and richness are usually negatively correlated when a speaker
dynamically changes laryngeal output. The sm and ri options do not influence the
speaker’s identity very much.

Nopen Fixed, nf

The number of samples in the open part of the glottal cycle is determined not only by
the ri option, but also by a second option, nf. The Nopen Fixed (nf) option is the
number of fixed samples in the open portion of the glottal cycle.

Most speakers adjust the open phase to be a certain fraction of the period, and this
fraction is determined by the ri option. Other speakers keep the open phase fixed in
duration when the overall period varies. To simulate this behavior, set the ri option to
100 and adjust the nf option to the desired duration of the open phase. The shortest

5-10

possible open phase is 10 (1 ms), and the longest is three quarters of the period
duration (about 70 for a male voice).

Laryngealization, la

Many speakers turn voicing on and off irregularly at the beginnings and ends of
sentences, which gives a querulous tone to the voice. This departure from perfect
periodicity is called laryngealization or creaky voice quality.

The Laryngealization (la) option controls the amount of laryngealization, in the
voice. A value of 0 results in no laryngealized irregularity, and a value of 100 (the
maximum) produces laryngealization at all times. For example, to make Betty
moderately laryngealized, type the following command:

[:nb][:dv la 20]

The la option creates a noticeable difference in the voice, although it is not altogether
a pleasant change.

 5-11

Changing Pitch and Intonation

Seven speaker-definition options control aspects of the fundamental frequency (f0)
contour of the voice. These options are listed in Table 5-5.

Table 5-5 Fundamental Frequency Contour Options

bf Baseline fall, in Hz

hr Hat rise, in Hz

sr Stress rise, in Hz

as Assertiveness, in %

qu Quickness, in %

ap Average pitch, in Hz

pr Pitch range, in %

Baseline Fall, bf

The Baseline fall (bf) option in Hz determines one aspect of the dynamic
fundamental frequency contour for a sentence. If the bf option is 0, the reference
baseline fundamental frequency of a sentence begin and ends at 115 Hz. All rule-
governed dynamic swings in f0 are computed with respect to the reference baseline.

Some speakers begin a sentence at a higher f0 and gradually fall as the sentence
progresses. This falling baseline behavior can be simulated by setting the bf option to
the desired fall in Hz. For example, setting the bf option to 20 Hz causes the f0
pattern for a sentence to begin at 125 Hz (115 Hz plus half of bf) and to fall at a rate
of 16 Hz per second until it reaches 105 Hz (115 Hz minus half of bf). The baseline
remains at this lower value until it is reset automatically before the beginning of the
next full sentence (right after a period, question mark, or exclamation point). The rate
of fall (16 Hz per second) is fixed, regardless of the extent of the fall.

Whenever you include a [+] syntactic symbol in the text to indicate the beginning of
a paragraph, the baseline is automatically set to begin slightly higher for the first
sentence of the paragraph. While baseline fall differs among speakers, it is not a
good cue for differentiating among them. As long as the fall is not excessive, its
presence or absence is hardly noticeable. See Chapter 4 for a complete list of
symbols.

5-12

Hat Rise, hr

The Hat rise (hr) option (nominal hat rises in Hz) and sr option (nominal stress
impulse rises in Hz) determine aspects of the dynamic fundamental frequency
contour for a sentence. To modify these values selectively, you should understand
how the f0 contour is computed as a function of lexical stress pattern and syntactic
structure of the sentence.

A sentence is first analyzed and broken into clauses with punctuation and clause-
introducing words to determine the locations of clause boundaries. Within each
clause, the f0 contour rises on the first stressed syllable, stays at a high level for the
remainder of the clause up to the last stressed syllable, and falls dramatically on the
last stressed syllable. This rise-at-the-beginning and fall-at-the-end pattern has been
called the hat pattern by linguists, using the analogy of jumping from the brim of a
hat to the top of the hat and back down again.

The hr option indicates the nominal height, in Hz of a pitch rise to a plateau on the
first stress of a phrase. A corresponding pitch fall is placed by rule on the last stress
of the phrase. Some speakers use relatively large hat rises and falls, while others use
a local impulse-like rise and fall on each stressed syllable. The default hr option
value for Paul is 18 Hz, indicating that the f0 contour rises a nominal 18 Hz when
going from the brim to the top of the hat. To simulate a speaker who does not use hat
rises and falls, use the command:

[:dv hr 0]

Other aspects of the hat pattern are important for natural intonation but are not
accessible by speaker-definition commands. For example, the hat fall becomes a
weaker fall followed by a slight continuation rise if the clause is to be succeeded by
more clauses in the same sentence. Also, if unstressed syllables follow the last
stressed syllable in a clause, part of the hat fall occurs on the very last (unstressed)
syllable of the clause. If the clause is long, DECtalk Software may break it into two
hat patterns by finding the boundary between the noun phrase and the verb phrase.

If DECtalk Software is in phoneme input mode and you use the pitch rise [/] and
pitch fall [\] symbols, the hr option determines the actual rise and fall in Hz. See
Chapter 4 for a complete list of symbols.

Stress Rise, sr

The Stress rise (sr) option indicates the nominal height, in Hz, of a local pitch rise
and fall on each stressed syllable. This rise-fall is added to any hat rise or fall that is
also present. For example, Paul has the sr option set to 32 Hz, resulting in an f0 rise-
fall gesture of 32 Hz over a span of about 150 ms, which is located on the first and

 5-13

succeeding stressed syllables. However, DECtalk Software rules reduce the actual
height of successive stress rises and falls in each clause and cause the last stress pulse
to occur early so that there is time for the hat fall during the vowel.

If the sr option is set too low, the speech sounds monotone within long phrases.
Great changes to the hr and sr options from their default values for each speaker are
not necessary or desirable, except in unusual circumstances.

Assertiveness, as

The Assertiveness (as) option, in %, indicates the degree to which the voice tends to
end statements with a conclusive final fall. Assertive voices have a dramatic fall in
pitch at the end of utterances. Neutral or meek speakers often end a sentence with a
slight questioning rise in pitch to deflect any challenges to their assertions. A value of
100 is very assertive, while a value of 0 is extremely meek.

Quickness, qu

The Quickness (qu) option, in percentage, controls the speed of response to a request
to change the pitch. All hat rises, hat falls, and stress rises can be thought of as
suddenly applied commands to change the pitch, but the larynx is sluggish and
responds only gradually to each command. A smaller larynx typically responds more
quickly, so while Harry has a quickness value of 10, Kit has a value of 50.

In engineering terms, a value of 10 implies a time constant (time to get to 70% of a
suddenly applied step target) of about 100 ms. A value of 90% corresponds to a time
constant of about 50 ms. Lower quickness values may mean that the f0 never reaches
the target value before a new command comes along to change the target.

Average Pitch, ap, and Pitch Range, pr

The Average pitch (ap) option (average pitch, in Hz) and the pitch range (pr) option
(pitch ranges in % of normal range) modify the computed values of fundamental
frequency, f0, according to the formula:

f0’ = ap + (((f0 - 120) * pr) / 100)

If the ap option is set to 120 Hz and the pr option to 100%, there is no change to the
normal f0 contour that is computed for a typical male voice. The effect of a change
in the ap option is simply to raise or lower the entire pitch contour independently by
a constant number of Hz, whereas the effect of the pr option is to expand or contract
the swings in pitch about 120 Hz.

Normally, a smaller larynx simultaneously produces f0 values that are higher in
average pitch and higher in pitch range by about the same factor (the whole f0

5-14

contour is multiplied by a constant factor). Observing the values assigned to the ap
and pr options for each of the voices, you can see that the voices rank in average
pitch from low (Harry) to high (Kit).

Rankings for the pr option are similar, except that Frank has a flat, nonexpressive
pitch range as compared with his average pitch.

The best way to determine a good pitch range for a new voice is by trial and error.
You can create a monotone or robot-like voice by setting the pitch range to 0. For
example, to make Harry speak in a monotone at exactly 90 Hz, type the following
command.

[:nh][:dv ap 90 pr 0] I am a robot.

Reducing the pitch range reduces the dynamics of the voice, producing emotions
such as sadness in the speaker. Increasing the pitch range while leaving the average
pitch the same or setting it slightly higher suggests excitement.

Due to constraints involved in pitch-synchronous updating of other dynamically
changing options, the fundamental frequency contour that is computed by the
preceding formula is then checked for values that are outside the following limits.

f0 maximum = 500 Hz

f0 minimum = 50 Hz

Any value outside this range is limited to fall within the range.

To keep you from exceeding reasonable limits on the options that control pitch,
certain constraints apply to the values selected. If the Design Voice command
specifies values outside these limits, the value is limited to the nearest listed value
before execution.

 5-15

Changing Relative Gains and Avoiding Overloads

Eight speaker-definition options control the output levels of various internal
resonators. These options are listed in Table 5-6.

Table 5-6 Internal Resonator Options

gv Gain of voicing source, in dB

gh Gain of aspiration source, in dB

gf Gain of frication source, in dB

gn Gain of nasalization, in dB

g1 Gain of cascade formant resonator 1, in dB

g2 Gain of cascade formant resonator 2, in dB

g3 Gain of cascade formant resonator 3, in dB

g4 Gain of cascade formant resonator 4, in dB

g5 Loudness of the voice, in dB

Loudness, g5

The Loudness of the voice (g5) option is set to about the same perceived loudness for
each of the predefined voices. The values chosen are optimal for telephone
conversation and are near the maximum value beyond which some phonemes would
probably cause an overload squawk. A near-maximum value was selected for each
predefined voice to maximize the signal-to-noise level of DECtalk Software.

If you want to decrease the loudness of a voice or temporarily increase a phrase that
is known not to overload, determine the g5 option value in dB for the voice in
question. Then adjust the voice by using the following command:

[:np][:dv g5 76] I am speaking at about half my normal level.

Because the g5 option value for Paul is 86, this command reduces loudness by 10
dB. Perceived loudness approximately doubles (or halves) for each 10 dB increment
(or decrement) in the g5 option.

Software control over loudness is useful in a loudspeaker application where the
background noise level in the room might change. For example, a vocally
handicapped, wheelchair-bound person does not want to appear to be shouting in a
quiet interpersonal conversation, but he or she may want to be able to converse in a
noisy room as well.

5-16

Note

DECtalk Software comes with volume control so that modification of the g5 option should
not be necessary. Using the Volume command or the volume control knob on the
external loudspeaker is recommended.

Sound Source Gains, gv, gh, gf, and gn

Several types of sound sources are activated during speech production: voicing,
aspiration, frication, and nasalization. The relative output levels of these sounds, in
dB, are determined by the Gain of voicing source (gv) option, the Gain of aspiration
source (gh) option, the Gain of frication source (gf) option, and the Gain of
nasalization (gn) option, respectively. The default settings for these options are
factory preset to maximize the intelligibility of each voice. However, changing the
settings can be useful in debugging the system or in demonstrating aspects of the
acoustic theory of speech production. You can change the level of one sound source
globally. For example, turn off frication to hear just the output of the larynx. You
might need to reduce these options to overcome certain kinds of overloads, but try
the procedure described in the next section first.

Cascade Vocal Tract Gains, g1, g2, g3, and g4

Changes in head size or other options can sometimes produce overloads in the
synthesizer circuits. If this occurs, make sure that the f4 and f5 options are set to
reasonable values. If the squawk remains, you can adjust several gain controls in the
cascade of formant resonators of the synthesizer to attenuate the signal at critical
points. These gain controls are the Gain of cascade formant resonator (g1 through
g4) options. These gains can then be amplified back to desired output levels later in
the synthesis.

Use the following procedure to correct an overload (typically indicated by a squawk
during part of a word):

1. Synthesize the word or phrase several times to make sure the squawk occurs
consistently. Use the same test word each time a change to a gain is made.

2. Determine the default values for the g1 through g4 options for the speaker that
overloads.

3. Reduce the g1 option by increments of three until the squawk goes away. When
the squawk goes away, note the reduction that was needed. If more than a 10 dB
decrement is required, some other option has probably been changed too much.
If the squawk does not go away at all, then you may need to reduce the gv
option instead of the g1 option.

 5-17

4. Increase the g5 option to return the output to its original level. For example, if
the g1 option was reduced by 6 dB, add 6 dB to the g5 option (or to the g4
option if the g5 option is already at a maximum). If incrementing the g5 option
causes the squawk to return, then decrease the g5 option slowly until the squawk
goes away.

This procedure works in most cases, but using the g2 option rather than the g1 option
can work better. If you can return the g1 option to its factory-preset value and reduce
the g2 option instead to make the squawk go away, then the signal-to-quantization-
noise level in the g1 option remains maximized. If you can eliminate the squawk by
using the g3 or g4 option rather than the g2 option, more of the cascaded resonator
system can be made immune to quantization noise accumulation.

5-18

Saving Changes as Val’s Voice

A user can change any of the voice characteristics of the current speaker by using the
options available in the Design Voice command. These changes are active only
while the current speaker remains current. You can save a modified speaker
definition in a buffer while synthesizing speech with other voices. To save voice
changes for use after the current speaker has changed, use the save option of the
Design Voice command. These voice changes are saved as the voice of Val. The Val
voice [:nv] is either male or female, depending on what values are stored in the
buffer. If you call Val before storing any values in the buffer, DECtalk Software
initializes Val voice to be the same as that of Paul.

Save, save

The Save (save) option of the Design Voice command lets you save speaker-
definition options as Val’s voice. You can modify any of the predefined voices, but
you can save the modifications only as Val’s voice. The following commands store a
modified Betty voice in Val and then recall the modified voice:

[:nb][:dv sx m save] Betty now sounds like a man. Val now has this voice.

[:nb] Betty’s voice is back to normal.

[:nv] Val’s voice sounds like Betty as a man.

Val’s voice characteristics are retained until the TextToSpeechShutdown() function
is called or a new save is done. You must reenter new voice characteristics for Val
after successfully issuing a startup function.

Note

If you want to use the save option, leave a space between the command option and the
trailing bracket; for example, [:dv save].

 5-19

Summary of Design Voice Options

Of the 28 options, only a few cause dramatic changes in the voice. The greatest
effects are obtained with changes to the hs, ap, pr, and sx options, while moderate
changes occur when modifying the la and br options. To some extent, DECtalk
Software’s nine predefined speakers cover most of the possible voices. However, you
might easily find ways to slightly improve one of the standard voices.

 6-1

Chapter 6 —
Preprocessor Rules for Parsing

The preprocessor parses text to ensure that DECtalk Software pronounces it
correctly and efficiently with respect to its context. Users can suppress the parsing
action of the preprocessor with the Skip inline command or modify it with the
Punctuation inline command. Three sets of rules apply to the parsing process:

• Email parsing rules

• Punctuation parsing rules

• General parsing rules

Email Parsing Rules

When the preprocessor parses an email message, it strips out much of the mail
header, saving only:

• Sent:

• Date:

• Subject:

• Subject: Re:

• From:

• To:

• Forwarded Message:

6-2

Punctuation Parsing Rules

When the preprocessor encounters punctuation, it interprets each punctuation mark
(by default) as a guide to speaking the text normally, unless you use inline
commands to specify otherwise with the Punctuation command, [:punct] or the
Skip command, [:skip].

Interpreting Punctuation Marks as Words

For the [:punct all] command, the preprocessor interprets each punctuation mark as
a word to be pronounced. For example, the symbol “~” is interpreted as the word
“tilde,” and the symbol “,” is interpreted as the word “comma.”

For the [:punct none], [:punct pass], and [:skip all] commands, the preprocessor
interprets the following symbols normally to modify text:

• .

• ,

• ;

• :

• ?

• !

All other punctuation marks are ignored.

Interpreting Punctuation Marks as Punctuation

For the [:punct some] command, the preprocessor applies the following rules:

• Multiple instances of identical punctuation marks are reduced to a single
symbol. For example, --------------- becomes -, and *************** becomes
*.

• Doubly encapsulated items become singly encapsulated. For example,
“(intelligent)” and ((intelligent)) become (intelligent).

• Hours and minutes are not altered. For example, 2:43pm becomes
two forty-three P M.

• Numerals and decimal numbers are not altered. For example, -3.52 becomes
minus three point five two.

 6-3

• Currency values are interpreted appropriately. For example, -$43,65 becomes
minus forty-three dollars and sixty-five cents, and +$123.21 becomes plus
one hundred and twenty-three dollars and twenty-one cents.

• Uppercase single letters followed by periods are interpreted as single letters. For
example, U.S.A. becomes U S A.

• P.M. and p.m. become P M.

• Doubled clause boundary symbols are reduced to the first clause boundary. For
example, boom!, becomes boom!

• Commas and hyphens not followed by spaces are changed to be followed by
spaces. For example look,look becomes look, look.

General Parsing Rules

Rules for parsing numbers and some other items vary according to the language
being spoken.

German

Language-specific rules apply to:

• Hours and minutes

• Dates

• Currency

• Phone numbers

• Compound nouns

Spanish (Castilian and Latin American)

Language-specific rules apply to:

• Dates

• Currency

• Phone numbers

6-4

• Credit cards

English (UK)

Language-specific rules apply to:

• Dates

• Addresses

English (US, UK)

Language-specific rules apply to:

• Dates

• Hours and minutes

• Street, avenue, and drive

• Numbered street names; for example, 29 42 Street becomes twenty-nine forty-
second street

• Phone numbers are spoken as digits, with appropriate pauses

• Dr. becomes doctor

• St. becomes saint

• Two-letter state names are pronounced in full; for example MA 01749 becomes
Massachusetts zero one seven four nine

• Postal zip codes within a mail address are spoken one digit at a time

• URL addresses are spoken one character at a time

• File names are spoken one character at a time

• In compound words, prefixes may be broken apart from the second word

• Days of the week

• Directions on the compass are spoken in full; for example 30 W becomes thirty
west

 6-5

• Roman numerals following a name are spoken as ordinal numbers; for example
John Doe III becomes John Doe the third

• Credit card numbers are spoken appropriately; for example, 6011 4134 3621
4172 becomes six zero one one, four one three four, three six two one, four
one seven two.

• In a word written with mixed uppercase and lowercase letters, each uppercase
letter begins a new word; for example, TextToSpeech becomes text to speech

• Combinations of numbers and letters are broken into numbers and individual
letters; for example two34five becomes T W O thirty-four F I V E; XF302QB
becomes XF three hundred and two QB

 1

Glossary

allophone

A positional or free variant of a phoneme.

applet

A small application that normally performs a very specific function and can be used with
other larger applications.

arpabet

A special phonetic alphabet used to write phonemes and syllables.

clause boundary

The natural boundary between two or more clauses in a sentence that helps the listener
easily separate the sentence into its component parts. Commas, periods, exclamation
points, question marks, semi-colons, and colons are symbols used to indicate clause
boundaries.

clause mode

The normal mode in which DECtalk Software speaks text a phrase, clause, or sentence
at a time. In clause mode, speaking starts when DECtalk Software is sent a clause
terminator (period, comma, exclamation point, question mark, semi-colon, or colon)
followed by a space.

clause terminator

A symbol used to begin and terminate a clause boundary. Symbols can be periods,
commas, exclamation points, question marks, semi-colons, or colons. Each of these
symbols must be followed by a space.

2

comma pause

The pause DECtalk Software takes in speaking that is equivalent to inserting a comma
in a sentence. Comma pause can be increased and decreased with the Comma Pause
command.

.dic file

The loadable dictionary file created by the User Dictionary Build Tool from a .tab source
file.

dynamic engine

A text-to-speech engine that accesses .lib files using dynamic link libraries (DLLs). DLLs
are software modules in Microsoft Windows operating environments that contain
executable code and data that can be called and used by Windows applications or other
DLLs. Functions and data in a DLL are loaded and linked at run time when they are
referenced by a Windows application or other DLLs. DLLs can be unloaded when the
code is no longer needed.

emphatic stress

The emphasis placed on a syllable of a word to give it more meaning.

falling intonation

A decrease in voice pitch.

flush

Process by which the Text-To-Speech system discards data in the system.

heuristic

A method or rule used to decide among several courses of action. Often called a “rule of
thumb.” In the case of DECtalk Software, pronunciation heuristics govern the manner in
which DECtalk Software pronounces words.

homograph

A pair of words that have the same spelling but which are pronounced differently,
depending on which syllable is accented. For example, the pronunciation of permit as a
noun and the pronunciation of permit as a verb.

 3

index marker (flag)

A marker placed in the text stream to synchronize an external event. An index marker is
inserted with the Index Mark command.

intonation
The manner in which a voice imparts extra meaning to speech by adjusting sound
duration and voice pitch. For example, the emphasis and meaning of the sentence, Bill,
put in the edits. can be changed by putting stronger emphasis on the name, Bill. Bill!
Put in the edits!

letter mode

The state in which DECtalk Software speaks each letter as it is queued. In word and
letter mode, DECtalk Software does not need to wait for a clause terminator to begin
speaking. This command interacts with the rate selection command so that you can set
both rate selection and letter mode for optimal output.

log file

A file that receives speech output samples that are written as text, phonemes, or
syllables. The phonemes and syllables are written using the arpabet phoneme alphabet.

log-file mode

Log-file mode indicates that the speech samples are to be written as text, phonemes, or
syllables into a log file rather than sent to an audio device. The
TextToSpeechOpenLogFile() function enters the text-to-speech system into a log-file
mode. The TextToSpeechCloseLogFile() function returns the text-to-speech system to
the startup state.

morpheme

The minimum syntactic unit of a language that has an important role in determining
pronunciations. For example, spell has only one morpheme, while misspelling is made up
of three: mis, spell, and ing.

period pause

The pause DECtalk Software inserts when it finds a period that marks the end of the
sentence. This pause imitates humans taking a breath. This pause is approximately half
a second.

4

phoneme

The smallest unit of speech that distinguishes one word from another. Phonemes are
divided into vowel and consonant phonemes. DECtalk Software interprets text within
brackets as phonemes only after the phoneme arpabet command is used.

phoneme arpabet command

A command that causes all text within brackets to be treated as phonemic text.

phoneme string

Two or more phonemes together used to pronounce a special word or group of words.

phonemicize

To encode words as strings of phonemes.

phonemic mode

A mode that DECtalk Software uses for speaking phoneme strings.

phonemic transcription

A word written the way it is pronounced is said to be in phonemic transcription or simply
in phonemics. When DECtalk Software says a word or phrase not as you intended, you
might need to use phonemic transcription to get the desired pronunciation. For example,
[r ’ ehd] is the phonemic transcription of the word read.

phrase boundary

A clause boundary formed by terminating punctuation (comma, period, exclamation
point, question mark, semi-colon, colon) followed by a space.

pitch control symbols

Symbols used to override built-in DECtalk Software pitch control. Symbols include pitch
rise [/], pitch fall [\], and pitch rise and fall [/\].

primary stress

Most content words of English (nouns, verbs, adjectives, and adverbs) contain one
primary stressed syllable. The primary stress symbol in DECtalk Software is the
apostrophe [’].

 5

proper name

First names, last names, street names, company names, and place names are all
examples of proper names.

secondary stress

A symbol used to indicate a degree of stress that is between primary and unstressed (no
stress). The secondary stress symbol is the grave accent [‘].

silence phonemes

Silences of specified durations inserted into text files in the same manner as you would
insert a phoneme.

speech-to-memory mode

In speech-to-memory mode, speech samples are written into memory buffers rather than
sent to an audio device. The TextToSpeechAddBuffer() function supplies the text-to-
speech system with the memory buffers that it needs. The
TextToSpeechOpenInMemory() function causes the text-to-speech system to enter
speech-to-memory mode. The TextToSpeechCloseInMemory() function returns the
text-to-speech system to the startup state.

startup function

Startup function refers to either the TextToSpeechStartup() function or the
TextToSpeechStartupEx() function.

startup state

Startup state indicates that the TextToSpeechStartup() function or the
TextToSpeechStartupEx() function has been successfully called and the text-to-
speech system is not in one of the three special modes; wave-file, log-file, or speech-to-
memory mode. While DECtalk Software is in the startup state, speech samples are sent
to an audio device or ignored, depending on whether the
DO_NOT_USE_AUDIO_DEVICE flag is set in the dwDeviceOptions parameter of the
startup function. If the text-to-speech system is in one of its special modes, the speech
samples are handled accordingly.

static engine

A text-to-speech engine that accesses .lib files without using dynamic link libraries
(DLLs). See also dynamic engine.

6

syntactic function words

A set of words that are either unstressed or have secondary stress. They include
prepositions, conjunctions, determiners, auxiliary verbs, pronouns, the question mark,
and clause introducers. DECtalk Software uses stress and syntactic symbols to control
aspects of rhythm, stress, and intonation patterns. These symbols include punctuation
marks such as commas, periods, question marks, and exclamation points.

.tab file

The source file used to build a user dictionary.

user dictionary

The dictionary that you create for DECtalk Software to load and use with an application
to control the pronunciation of specific words processed by the application.

user dictionary builder

An applet included with DECtalk Software to build and compile user dictionaries.

voice-control command

A DECtalk Software in-line command inserted into text strings and used to control basic
and special Text-To-Speech attributes, such as speaking voice and speaking rate.

WAVE file

A Microsoft standard file format for storing waveform audio data. WAVE files have a
.wav file extension.

wave-file mode

Wave-file mode indicates that the speech samples are to be written to a wave file rather
than sent to an audio device. The TextToSpeechOpenWaveOutFile() function enters
the text-to-speech system into a wave-file mode. The
TextToSpeechCloseWaveOutFile() function returns the text-to-speech system to the
startup state.

wave form output

The digitized reproduction of a sound wave form. DECtalk Software produces wave form
output from the Speak applet and the API, both of which allow you to save an ASCII text
file to .wav file format.

 7

word boundary

A white space character (space, tab, or carriage return) in the text that indicates a
boundary between words. DECtalk Software uses word boundary symbols to select the
word-beginning or word-ending allophone of a phoneme.

word mode

A text-processing mode in which DECtalk Software speaks one word at a time. A blank
space or equivalent after a character or string of characters causes that string to be
spoken in word mode.

 1

Index

[+] syntactic symbol, 5-11
abbreviations, 2-1
Access32, 1-48
age, 5-2
aged female voice, 2-15
aged male voice, 2-15
alternate pronunciations, 2-21
ap option, 5-13
API calls

TextToSpeechAddBuffer, 1-3
TextToSpeechCloseInMemory, 1-5
TextToSpeechCloseLang, 1-6
TextToSpeechCloseWaveOutFile, 1-8
TextToSpeechEnumLangs, 1-9
TextToSpeechGetCaps, 1-10
TextToSpeechGetFeatures, 1-11
TextToSpeechGetLanguage, 1-12
TextToSpeechGetRate, 1-13
TextToSpeechGetSpeaker, 1-14
TextToSpeechGetStatus, 1-15
TextToSpeechLoadUserDictionary, 1-16
TextToSpeechOpenInMemory, 1-17
TextToSpeechOpenLogFile, 1-19
TextToSpeechOpenWaveOutFile, 1-21
TextToSpeechPause, 1-23
TextToSpeechReset, 1-25
TextToSpeechResume, 1-27
TextToSpeechReturnBuffer, 1-28
TextToSpeechSelectLang, 1-29
TextToSpeechSetLanguage, 1-30
TextToSpeechSetRate, 1-31
TextToSpeechSetSpeaker, 1-32
TextToSpeechShutdown, 1-33
TextToSpeechSpeak, 1-34
TextToSpeechStartLang, 1-36
TextToSpeechStartup (Linux & UNIX), 1-41
TextToSpeechStartup (Windows), 1-38

TextToSpeechStartupEx, 1-44
TextToSpeechSync, 1-47
TextToSpeechTyping, 1-48
TextToSpeechUnloadUserDictionary, 1-49
TextToSpeechVersion, 1-50
TextToSpeechVersionEx, 1-51

API function calls
TextToSpeechCloseLogFile, 1-7

applet
userdict, 1-16
windict, 1-16

Application development
electronic mail, 3-2

arpabet alphabet, 1-19
as option, 5-13
aspiration, 5-16
Assertiveness (as option), 5-13
audio output, 1-23, 1-25
audio system gain, 2-29
Average pitch (ap option), 5-13
background noise level, 5-15
baseline, 5-11
Baseline fall (bf option), 5-11
bf option, 5-11
bitmask, 1-11
br option, 5-8
Breathiness (br option), 5-8
breathy, whispering speaker, 5-8
brilliance, 5-9
brilliant, rich voices, 5-9
callback routine, 1-44
Calls. See API calls
characters, 2-11
child’s voice, 5-6
child's voice, 2-15
comma pause, 2-4
Comma Pause [:comma] or [:cp] command, 2-4

2

Comma Pause duration
control of, 3-8

command names, 2-1
commands

Comma Pause [:comma] or [:cp], 2-4
Design Voice, :dv, 2-5, 5-2
Dial Tones [:dial], 2-6
Error [:error], 2-7
Index mark [:index mark], 2-8
Log [:log], 2-9
Mode [:mode], 2-10
Name [:name], 2-15
Period Pause [:period] or [:pp], 2-16
Phoneme Interpretation [:phoneme], 2-17
Pitch [

pitch], 2-19
Play Wave Files [:play], 2-20
Pronounce [:pronounce], 2-21
Punctuation [:punct], 2-22
Rate Selection [:rate], 2-24
Say [:say], 2-25
Skip [:skip], 2-26
Sync [:sync], 2-27
Tone [:tone], 2-28
Volume [:volume], 2-29

common errors, 3-11
compatibility, 1-50
contour, 5-12
contour, limits, 5-14
correct an overload, 5-16
current buffer, 1-28
DAPI compatibility, 1-50
DECtalk

developing an application, 3-2
DECtalk calls. See API calls
DECtalk Multi-Language (ML) engine, 1-6, 1-

36
DECtalk Software API calls, 1-1
DECtalk Software voices

aged female voice [:nu], 2-15
aged male voice [:nf], 2-15
child’s voice [:nk], 2-15

default male voice [:np], 2-15
female voice [:nr], 2-15
full female voice [:nb], 2-15
full male voice [:nh], 2-15
male voice [:nd], 2-15
Val’s voice [:nv], 2-15
whispering female voice [:nw], 2-15

DECtalk Software voices, 2-15, 5-2
deep voice, 5-6
default male voice, 2-15
default rate for DECtalk Software, 3-6
default speaking rate, 2-24, 3-6
delimiters, 2-17
Design Voice [:dv] command, 2-5, 2-15, 5-2. See

also speaker-definition options
Dial Tones [:dial] command, 2-6
dialect, 5-2
dictionary

main, 1-38, 1-41
user pronunciation, 1-38, 1-41

dramatic voice changes, 5-6
duration and pitch attributes, 4-2
dwBufferLength element, 1-28
dwDeviceOptions parameter, 1-5, 1-7, 1-8
dynamic fundamental frequency contour, 5-12
email

headers, 2-12
email

parser, 3-2
parsing, 6-1

email
text, 2-12

English UK,
parsing, 6-4

English US, UK,
parsing, 6-4

Error [:error] command, 2-7
error mode, 2-7
errors, 3-11
excitement, 5-14
fastest usable rate, 3-6
features of DECtalk, 1-11

 3

female voice, 2-15, 5-5, 5-6, 5-8
formant, 5-6
formant filter, 5-7
formant resonances, 5-6
frequencies, 4-21
frequency contour, 5-11, 5-12
frequency contour, limits, 5-14
frication, 5-16
full female voice, 2-15
full male voice, 2-15
Function calls. See API calls
fundamental frequency, 5-11, 5-13
fundamental frequency contour, 5-12
fundamental frequency contour, limits, 5-14
g1 through g4 options, 5-16
g5 option, 5-15
Gain of aspiration source (gh option), 5-16
Gain of cascade formant resonator (g1 through

g4 options), 5-16
Gain of frication (gf option), 5-16
Gain of nasalization (gn option), 5-16
Gain of voicing source (gv option), 5-16
German

parsing, 6-3
gf option, 5-16
gh option, 5-16
gn option, 5-16
gv option, 5-16
Hat rise (hr option), 5-12
Head size (hs option), 5-6
head size and shape, 5-2, 5-5
headers, email, 2-12
higher voice, 5-6
homographs, 4-1, 4-23
hr option, 5-12
hs option, 5-6
Index mark [:index mark] command, 2-8
Index Mark command, 3-5
index marks, 3-5
information, version, 1-51
in-line commands, 2-1. See commands
interpretation, 2-1, 2-17

intonation and stress, 2-1
intonation patterns, 3-2
la option, 5-10
language, 1-6
Laryngealization (la option), 5-10
larynx size and behavior, 5-2
Lax breathiness (lx option), 5-8
lexical stress pattern, 5-12
Log [:log] command, 2-9
log file, 1-19, 2-9
log-file mode, 1-19
Loudness of the voice (g5 option), 5-15
loudspeaker application, 5-15
low-pass filter, 5-9
lx option, 5-8
main dictionary, 1-38, 1-41
male voice, 2-15, 5-5, 5-6, 5-8, 5-13
markers, 2-8
math equations, 3-6
ML engine, 1-6, 1-36
mode

error, 2-7
log file, 1-19
wave-file, 1-21

Mode [:mode] command, 2-10
Mode command options

Email, 2-12
Europe, 2-10
Math, 2-11
Name, 2-11

monaural volume, 2-29
monotone voice, 5-14
musical sounds, 4-21
musical tones, 4-21
Name [:name] command, 2-15
names, 2-1
nasalization, 5-16
nb voice, 2-15
ndvoice, 2-15
nf option, 5-9
nf voice, 2-15
nh voice, 2-15

4

nk voice, 2-15
noise level, 5-15
nonbreathy, tense voice, 5-8
Nopen Fixed (nf option), 5-9
notes, 4-21
np voice, 2-15
nr voice, 2-15
nu voice, 2-15
nv voice, 2-15
nw voice, 2-15
option names, 2-1
overload, 5-16
overload squawk, 5-15
parsing, 6-1

email, 6-1
English UK, 6-4
English US, UK, 6-4
punctuation, 6-2
rules, 6-3
Spanish, 6-3

parsing, German, 6-3
pause, 2-4
paused state, 1-21
Period Pause [:period] command, 2-16
Period Pause duration

control of, 3-8
phone numbers, 3-6
phoneme delimiters, 2-17
phoneme interpretation, 2-1, 2-17
Phoneme Interpretation [:phoneme] command,

2-17
phonemes

listed in Unicode sequence, 4-1
phonemic symbols, 4-1
phonemicizing text, 2-17
phrasing requirements, 3-2
pitch range, 5-2
Pitch [pitch] command, 2-19
pitch and timing habits, 5-2
pitch attributes, 4-2
pitch numbers, 4-21
pitch range, 5-14

Play Wave Files [:play] command, 2-20
pleasant, intelligible voices, 5-5
position markers, 2-8
pitch

range (pr option), 5-13
ppTTSbuffer, 1-28
pr option, 5-13
preprocessor, 6-1
preprocessor rules for parsing, 6-1
primary pronunciations, 2-21
prominent resonant peaks, 5-6
Pronounce [:pronounce] command, 2-21
pronunciation dictionary, 1-16
pronunciations

alternate, 2-21
primary, 2-21

punctuation
parsing, 6-2

Punctuation [:punct] command, 2-22
punctuation modes, 2-22
qu option, 5-13
queued text, 1-47
Quickness (qu option), 5-13
Rate command, 3-6
Rate Selection [:rate] command, 2-24
reference baseline, 5-11
resonant peaks, 5-6
rhythm patterns, 3-2
ri option, 5-9
rich voices, 5-9
Richness (ri option), 5-9
right bracket (]), 2-1, 2-18
robot-like voice, 5-14
rules

parsing, 6-1
parsing, 6-3

sadness, 5-14
SAPI functions, 4-1
Save (save) option, 5-18
save option, 5-18
save voice changes, 5-18
Say [:say] command, 2-25

 5

sex, 5-2
Sex (sx option), 5-5
Silence phonemes, 3-3
sing songs, 4-21
singing tones, 4-1
Skip [:skip] command, 2-26
sm option, 5-9
smooth, soft voices, 5-9
Smoothness (sm option), 5-9
smoothness and brilliance, 5-9
smoothness and richness, 5-9
soft voices, 5-9
software voices. See DECtalk Software voices
sounds, musical, 4-21
Spanish, parsing, 6-3
speaker-definition options, 2-5, 5-2, 5-5, 5-8, 5-

11, 5-15
Assertiveness (as option), 5-13
Average pitch (ap option), 5-13
Baseline fall (bf option), 5-11
Breathiness (br option), 5-8
formants, 5-6
Gain of aspiration source (gh option), 5-16
Gain of cascade formant resonators (g1

through g4 options), 5-16
Gain of friction source (gf option), 5-16
Gain of nasalization (gn option), 5-16
Gain of voicing source (gv option), 5-16
Hat rise (hr option), 5-12
Head size (hs option), 5-6
Laryngealization (la option), 5-10
Lax breathiness (lx option), 5-8
Loudness of the voice (g5 option), 5-15
Nopen Fixed (nf option), 5-9
pitch range (pr option), 5-13
Quickness (qu option), 5-13
Richness (ri option), 5-9
Save (save option), 5-18
Sex (sx option), 5-5
Smoothness (sm option), 5-9
Stress rise (sr option), 5-12

speaking math equations, 3-6

speaking rate, 1-13, 1-31, 2-1, 2-24, 3-6
speaking voice, 2-1
special characters, 2-11
special phrasing requirements, 3-2
special symbols, 2-11
spectral change, 5-9
speech production, 5-16
speech samples, 1-3
speech-to-memory mode, 1-3, 1-17
spoken language and written text, 3-9
squawk, 5-15, 5-16
sr option, 5-12
startup function, 1-5, 1-7, 1-8, 2-8
startup state, 1-5
status, 1-15
stereo volume, 2-29
store speech samples, 1-3
store voice changes, 5-2
stress and syntactic symbols, 3-2, 4-1
stress pattern, 5-12
stress patterns, 3-2
Stress rise (sr option), 5-12
stress symbols, 4-2, 4-16
supported SAPI functions, 4-1
sx option, 5-5
symbols, 2-11, 4-16
Sync [:sync] command, 2-27
syntactic structure, 5-12
syntactic symbols, 3-2, 4-1, 4-16
synthesizer, 2-1
system parameters, 1-15
system resources, 1-33
telephone conversation, 5-15
tense voice, 5-8
text tuning, 3-9
TextToSpeechAddBuffer, 1-3
TextToSpeechCloseInMemory, 1-5
TextToSpeechCloseLang, 1-6
TextToSpeechCloseLogFile, 1-7
TextToSpeechCloseWaveOutFile, 1-8
TextToSpeechEnumLangs, 1-9
TextToSpeechGetCaps, 1-10

6

TextToSpeechGetFeatures, 1-11
TextToSpeechGetLanguage, 1-12
TextToSpeechGetRate, 1-13
TextToSpeechGetSpeaker, 1-14
TextToSpeechGetStatus, 1-15
TextToSpeechLoadUserDictionary, 1-16
TextToSpeechOpenInMemory, 1-17
TextToSpeechOpenLogFile, 1-19
TextToSpeechOpenWaveOutFile, 1-21
TextToSpeechPause, 1-23
TextToSpeechReset, 1-25
TextToSpeechResume, 1-27
TextToSpeechReturnBuffer, 1-28
TextToSpeechSelectLang, 1-29
TextToSpeechSetLanguage, 1-30
TextToSpeechSetRate, 1-31
TextToSpeechSetSpeaker, 1-32
TextToSpeechShutdown, 1-33
TextToSpeechSpeak, 1-34
TextToSpeechStartLang, 1-36
TextToSpeechStartup (Linux & UNIX), 1-41
TextToSpeechStartup (Windows), 1-38
TextToSpeechStartupEx, 1-44
TextToSpeechSync, 1-47
TextToSpeechTyping, 1-48
TextToSpeechUnloadUserDictionary, 1-49
TextToSpeechVersion, 1-50
TextToSpeechVersionEx, 1-51
timing habits, 5-2
Tone [:tone] command, 2-28
tones, 2-6, 2-28, 4-21
TTS_BUFFER_T structure, 1-28
TTS_CAPS_T structure, 1-10
TTS_MSG_BUFFER, 3-5
TTS_MSG_INDEX_MARK, 3-5
typical male voice, 5-13
user dictionary, 1-49
user pronunciation dictionary, 1-38, 1-41
user-defined pronunciation dictionary, 1-16
userdict applet, 1-16

Val, 5-2, 5-18
Val’s voice, 2-15
valid licenses, 1-44
version information, 1-51
vocal fold vibrations, 5-9
voice changes, 5-2, 5-18
voice contour, 5-11
voice quality, 5-8
voices, 5-5. See DECtalk Software voices

breathy, 5-8
brilliant, rich, 5-9
child, 5-6
female, 5-5, 5-6
male, 5-5, 5-6
monotone, 5-14
nonbreathy, 5-8
DECtalk, 5-2
pleasant, intelligible, 5-5
robot-like, 5-14
smooth, soft, 5-9
tense, 5-8
whispering, 5-8

voice-selection, 3-11
voicing, 5-16
Volume command, 2-29
Volume command, 5-16

option
Down, 2-29
Set, 2-29
Up, 2-29

volume control, 2-29
volume control knob, 5-16
volume settings, 2-29
wave file, 1-8, 2-20
wave output device, 1-44
WAVE_MAPPER, 1-44
wave-file mode, 1-21
whispering female voice, 2-15
whispering speaker, 5-8
windict applet, 1-16

