
DECtalk® Software

Programmer’s Guide

April 2001

This guide introduces application programmers to DECtalk® Software and the DECtalk
Software API. It also explains the basics of DECtalk applets and DECtalk multi-language
programming.

Revision / Update
Information:

This document supersedes the DECtalk Software Programmer’s
Guide, Version 4.6.

Operating System: Microsoft Windows 95/98/ME/NT/2000
Microsoft Windows CE/Pocket PC
Red Hat Linux Version 5.0 or higher
Compaq Tru64 UNIX Version 4.x

Software Version: DECtalk Software Version 4.61

April 2001

The information in this publication is subject to change without notice. Force Computers, Inc. reserves the
right to make changes without notice to this, or any of its products, to improve reliability, performance, or
design.

FORCE COMPUTERS, INC. SHALL NOT BE LIABLE FOR TECHNICAL OR EDITORIAL ERRORS
OR OMISSIONS CONTAINED HERIN, NOR FOR INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM THE FURNISHING, PERFORMANCE, OR USE
OF THIS MATERIAL. THIS INFORMATION IS PROVIDED “AS IS” AND FORCE COMPUTERS,
INC. EXPRESSLY DISCLAIM ANY AND ALL WARRANTIES, EXPRESS, IMPLIED, STATUTORY,
OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY EXPRESS, STATUTORY, OR
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT.

This publication contains information protected by copyright. This publication shall not be reproduced,
transmitted, or stored in a retrieval system, nor its contents used for any purpose, without the prior written
consent of Force Computers, Inc.

Force Computers, Inc. assumes no responsibility for the use of any circuitry other than the circuitry that is
part of a product of Force Computers, Inc. Force Computers, Inc. does not convey to the purchaser of the
product described herein any license under the patent rights of Force Computers, Inc. nor the rights of
others.

The software described in this guide is furnished under a license agreement or nondisclosure agreement.
The software may be used or copied only in accordance with the terms of the agreement.

Copyright © 2000, 2001 by Force Computers, Inc. Certain portions © 1997, 1998, 1999 Compaq
Computer Corporation. All rights reserved.

The Force logo and DECtalk are trademarks of Force Computers, Inc.

Compaq is a registered trademark of Compaq Computer Corporation. Tru64 is a trademark of Compaq
Information Technologies Group, L.P.
Intel is a trademark of Intel Corporation.
Linux is a registered trademark of Linus Torvalds.
Microsoft, Windows, Windows 95, Windows 98, Windows ME, Windows NT, Windows 2000, and
Windows CE are registered trademarks of Microsoft Corporation.
Motif is a registered trademark of the Open Software Foundation, Inc.
Red Hat is a registered trademark of Red Hat Software, Inc.
SoundBlaster is a registered trademark of Creative Labs, Inc.
UNIX and The Open Group are trademarks of The Open Group.

Other product names mentioned herein may be trademarks and/or registered trademarks of their
respective companies.

iii

Contents

Chapter 1 — Introduction to DECtalk Software.................................... 1-1

Features and Functions ..1-2
High-Quality Speech and Word Pronunciation Accuracy ..1-2
Letter Mode, Word Mode, and Clause Mode ...1-2
Short Command Strings...1-2
Pronunciation Heuristics ..1-2

Components...1-3
Dtsample Applet (Windows Only)...1-3
Speak Applet ...1-5
Say Command-Line Applet ..1-6

Programming Aids...1-7
Application Programming Interfaces (APIs) ..1-7
In-Line Voice Control Commands...1-7
Dictionary Facilities..1-8

Text-to-Speech Server (Windows 95/98/ME/NT/2000 Only)1-9

Using the Components..1-10
Application Programmer...1-10
General User ...1-10

How It Works..1-12

Chapter 2 — Using the Applets to Learn DECtalk Software Basics 2-1

Speaking a Text File ..2-2

Inserting In-Line Voice Control Commands...2-5

Changing the Speaking Voice...2-7

Changing the Speaking Rate ..2-9

Using the User Dictionary Build Tool ...2-11
Menus and Commands..2-12
Building a User Dictionary..2-14

Using the Speak Applet...2-18

Using the Text-to-Speech Server from Windows Applications.............................2-22

iv

Step 1 — Creating a Word Macro and Associating It with a Template 2-23
Step 2 — Associating the Word Macro with a Toolbar Button 2-26
Step 3 — Launching and Configuring the DECtalk TTS Server............................ 2-28
Step 4 — Speaking Microsoft Word Text With the TTS Server 2-30

Using the Say Command-Line Applet.. 2-32

Chapter 3 — Introduction to the DECtalk Software API.......................3-1

The Core API Functions ... 3-4
TextToSpeechSpeak... 3-4
Important Text-Queuing Information.. 3-5
Clause-Based Synthesis ... 3-5
Callback Routines and Window Procedures .. 3-6
Phoneme Notifications .. 3-6
Error Messages .. 3-9
Index Mark Messages... 3-9
Buffer Messages... 3-10

Audio Output Control Functions ... 3-13

Blocking Synchronization Function .. 3-14

Control and Status Functions .. 3-15

Special Text-To-Speech Modes.. 3-16
Wave-File Mode.. 3-16
Log-File Mode... 3-16
Speech-To-Memory Mode... 3-17
Initialization of Memory Buffers ... 3-17

Dictionary Functions (Linux and UNIX) ... 3-21
Creating a User Dictionary .. 3-21
Loading the Main Dictionary .. 3-21
Loading the User Dictionary .. 3-22

Dictionary Functions (Windows).. 3-23
Creating a User Dictionary .. 3-23
Loading the Main Dictionary (Dynamic or Static Engine)...................................... 3-23
Loading the Main Dictionary (Static Engine) .. 3-24
Loading the User Dictionary .. 3-25

Registry Entry Information ... 3-26
Registry Entry Formats and Locations... 3-26
Registry Entry Key .. 3-28

 v

Sample Programs (UNIX)...3-29
Building Sample Programs...3-30
Header Files ..3-30
Shareable Libraries..3-31

Sample Programs (Windows)..3-32

Chapter 4 — Basics of Multi-Language Programming........................ 4-1

Starting a Language ..4-2

Selecting a Language..4-2

Closing a Language...4-2

Example..4-3

Glossary..1

Index...1

Figures
Figure 1-1 Visual Overview of the Dtsample Applet.. 1-4
Figure 1-2 Visual Overview of the Speak Applet ... 1-5
Figure 1-3 In-Line Command Components ... 1-8
Figure 1-4 Flow of the DECtalk Software Text-To-Speech Conversion Process.......... 1-12
Figure 2-1 Speaking a Text File Using the Dtsample Applet... 2-3
Figure 2-2 Rules for DECtalk Software In-Line Command Syntax 2-5
Figure 2-3 Changing the Speaking Voice .. 2-8
Figure 2-4 Changing the Speaking Rate ... 2-9
Figure 2-5 User Dictionary Build Tool.. 2-12
Figure 2-6 Creating or Modifying a User Dictionary .. 2-14
Figure 2-7 Saving and Compiling the Dictionary ... 2-16
Figure 2-8 Using the Speak Applet.. 2-19
Figure 2-9 Highlighting Spoken Text from the Speak Applet... 2-21
Figure 2-10 Creating a Word Macro .. 2-24
Figure 2-11 Associating the Word Macro with a Toolbar Button................................... 2-26
Figure 2-12 Launching and Configuring the DECtalk Server .. 2-28
Figure 2-13 Speaking Text in a Word File With the TTS Server 2-30

vi

Tables
Table 2-1 Speaking a Text File .. 2-3
Table 2-2 DECtalk Voices and Their Associated Values... 2-7
Table 2-3 Changing the Speaking Voice.. 2-8
Table 2-4 Changing the Speaking Rate... 2-10
Table 2-5 Creating or Modifying a User Dictionary.. 2-14
Table 2-6 Saving and Compiling the Dictionary... 2-17
Table 2-7 Using the Speak Applet ... 2-20
Table 2-8 Creating a Word Macro.. 2-24
Table 2-9 Associating the Word Macro with a Toolbar Button 2-27
Table 2-10 Launching and Configuring the DECtalk TTS Server.................................. 2-29
Table 2-11 Speaking Microsoft Word Text With the TTS Server 2-31
Table 3-1 Text-To-Speech Functions by Category.. 3-2
Table 3-2 API Control and Status Functions.. 3-15
Table 3-3 Special Text-To-Speech Modes .. 3-16

vii

Preface
Purpose and Audience

This guide, DECtalk Software Programmer’s Guide, is for the application
programmer who wants to design and build text-to-speech applications with
DECtalk® Software. Use this guide in conjunction with the DECtalk Software
Reference Guide and the DECtalk Software Installation Guide.

Structure

The design of this guide gives you quick and easy access to information. Its
organization can help you easily learn about new topics and perform specific
tasks related to the use of the applets or development of a DECtalk Software
application.

The guide is organized as follows:

Chapter 1 Introduction to DECtalk Software

Chapter 2 Using the Applets to Learn DECtalk Software Basics

Chapter 3 Introduction to the DECtalk Software API

Chapter 4 Basics of Multi-Language Programming

Glossary Definitions of Terms Used in DECtalk Documentation

What’s New in DECtalk Software V4.61?

DECtalk Software V4.61 contains the following new features:

• Windows CE support extended to palm-size PCs and pocket PCs.

• Installation tested on Windows ME.

• Reduced footprint sizes for all platforms.

• Unified phoneme set for all supported languages, allowing you to specify
phonemes from different languages within the context of your current
language.

• Support for Version 5.0 of the Microsoft Speech API (SAPI) on Windows
98, Windows ME, Windows NT, and Windows 2000 platforms.

 viii

• Beta support for the French language.

• Enhanced German.

• Supplemental foreign-language dictionary for German, allowing you to
include foreign phrases in German speech.

• Addition of a Hebrew complement phoneme set.

• Support for Windows CE Agent, an automatic registry update application
for Windows CE developers.

What’s New in DECtalk Software V4.6?

DECtalk Software V4.6 contains the following new features:

• Installation tested on Windows 98 and Windows 2000.

• Support for Linux.

• Support for the German language.

• Disabled license error pop-up window from DECtalk Software API (DAPI)
engine.

• Significantly increased compliance with the Microsoft Speech API (SAPI);
see APPENDIX3.TXT.

• Enhanced Latin American and Castilian Spanish.

• Windows CE support, which includes a static version of windic.exe that
allows the Windows host to support a user-defined dictionary, and full
registry support.

• Y2K compliance.

• Over 170 bugs fixed, including the following:

q Various application or system hangs or crashes caused by data path,
synchronization, and dictionary failures corrected.

q User dictionary compiler failures corrected.
q Wave file headers corrected.
q Use of extended ASCII characters corrected.
q New in-line command Say filtered-letter added.
q Number processing changes automatically by language.
q Memory leaks corrected.

ix

q Main dictionary wordclass and function words added.
q Word and number stressing corrected.
q Diphthong, phoneme, homograph, and allophone processing corrected.

 x

Conventions

The following conventions are used in this guide:

Convention Meaning

enter Enter means type the required information and press the Enter key.

mouse Mouse refers to any pointing device, such as a mouse, a puck, or a stylus.

MB1 MB1 indicates the left mouse button.

click Click means to press and release MB1.

Double click Double click means to press and release MB1 twice in rapid succession without
moving the mouse.

drag The phrase drag means to press and hold MB1, move the mouse, and then
release MB1 when the pointer is in the desired position.

Ctrl/x Press the Ctrl key while you press another key.

Menu ÍCommand The right arrow key indicates an abbreviated instruction for choosing a command
from a menu. For example, File ÍExit means pull down the File menu, move
the pointer to the Exit command, and release MB1.

Courier type Courier type indicates text that is typed or displayed on the screen. This is
most often used for program code examples. Courier type also indicates file
names.

User Input Boldface type in interactive examples indicates information you enter from the
keyboard. For example:
A:>SETUP

XX YY and
XXn YYn

In DECtalk Software in-line command syntax, XX and YY indicate options and
parameters. When more than one choice of options or parameters is allowed, the
symbol XXn or YYn with n replaced by a numeral indicates each option or
parameter in the symbolic representations, such as [:phoneme XX1 XX2 YY].
Note that the number of characters in the symbolic representation does NOT
represent the number of characters allowed in the actual option or parameter
name.

DD and DDn In DECtalk Software in-line command syntax, DD indicates a decimal (base 10)
value. When more than one decimal values are allowed, the symbol DDn with n
replaced by a numeral represents each allowed value, such as [:volume XX DD1
DD2]. Note that the number of characters in the symbolic representation does
NOT represent the number of characters allowed in the actual decimal value.

Conventions used in API functions

Italics Italic text emphasizes important information.

Unless you are otherwise instructed, press Enter after typing responses to command
prompts.

1-1

Chapter 1 —
Introduction to DECtalk Software

DECtalk Software provides programming resources to support applications that
require text-to-speech output. This chapter provides a general overview of
DECtalk Software. Topics include:

• Features and functions

• Components

• Programming aids

• Text-to-Speech server (Windows 95/98/ME/NT/2000 only)

• Using the components

• How it works

 1-2

Features and Functions

DECtalk Software enables applications to extend the capabilities of your
computer by turning text files into spoken words.

High-Quality Speech and Word Pronunciation Accuracy

DECtalk Software provides the latest version of DECtalk speech synthesis
technology. With only a standard sound card for audio output, the programming
resources provided by DECtalk Software allow applications to accurately read
ASCII text from a variety of sources, such as electronic mail and word
processors. Nine different voices are provided, and users can control voice
pitch, rate of speech, and word or phrase emphasis. DECtalk Software has a
large built-in dictionary that enables accurate pronunciation of individual words
and enhances their rhythmic naturalness.

Letter Mode, Word Mode, and Clause Mode

DECtalk Software can speak single characters immediately, without waiting for
an entire clause to be buffered. DECtalk Software also provides normal clause
buffering for natural speech. DECtalk Software can speak letters, words,
phrases, clauses, paragraphs, and whole documents. DECtalk Software allows
the application to terminate speech immediately instead of waiting for the
buffered text to complete processing.

Short Command Strings

Many of the DECtalk Software in-line command strings can be abbreviated for
greater ease of use in applications.

Pronunciation Heuristics

DECtalk Software includes pronunciation heuristics that recognize and parse
unpronounceable sequences, such as sequences of uppercase initials (FBI,
AAA, and so forth) and sequences with no vowels (CBS and NBC, for
example).

1-3

Components

DECtalk Software components include:

• Sample graphical applets Dtsample (Windows only) and Speak

• Sample command-line applet Say

• Programming aids, including the DECtalk Software API (DAPI), the
Microsoft Speech API (SAPI) for Windows, in-line voice control
commands, and dictionary facilities

• Text-to-speech (TTS) server for Windows

• Source code for selected sample programs

Dtsample Applet (Windows Only)

The Dtsample applet and components are provided to give you some ideas on
how to get started with your application. Both the graphic user interface and
source components used to develop that user interface are included as part of
the Dtsample program. See Figure 1-1 for a visual overview of the Dtsample
applet dialog.

See Using the Applets to Learn DECtalk Software Basics for additional
description of the Dtsample program. Note that supported languages not
installed with DECtalk Software are grayed out on the Languages menu.
Languages shown in dark lettering are installed and ready to be used.

 1-4

Figure 1-1 Visual Overview of the Dtsample Applet

➊
➋

➌

➎

➍

Legend

å Dialog

� Menu bar: File, Edit, Speak, Voice, Rate, Languages, and Help menus

ê Start, pause, and stop push buttons

� Speech speed-control slider

� Edit window for text input

1-5

Speak Applet

The Speak applet is included as a practical example of how the DECtalk
Software API can be used to produce an innovative Text-To-Speech application
that maximizes user interaction through a highly graphical interface. Figure 1-2
provides a visual overview of the Speak applet.

Figure 1-2 Visual Overview of the Speak Applet

 Paul Betty Harry Frank Dennis Kit Ursula Rita Wendy

å

ê

�

�

�

Legend

å Menu bar: File, Edit, and Help menus � Speech speed-control slider

� Voice-activation buttons � Start, pause, and stop push buttons

ê Edit window for text input

Notes
• The Speak applet is not provided and not supported for Windows CE systems.

• English, Spanish, German, or French speaker names are displayed, depending on the
current default language. See the Name [:name] command description for lists of names.

• The faces display as cartoon characters when using VGA 16-color mode.

 1-6

Say Command-Line Applet

The DECtalk Say command-line applet lets you run DECtalk Software from the
operating system command prompt window. Say provides many of the standard
DECtalk input and output options available in the Speak and Dtsample applets
and in the DECtalk Software API. The general command syntax is as follows:

say [options] [text]

For a detailed description of the available command-line options, see Using the
Say Command-Line Applet.

Notes

• The Say applet is not provided and not supported for Windows CE systems.

• On UNIX systems the say command must be entered in lower case letters.

1-7

Programming Aids

The DECtalk Software programming aids include application programming
interfaces (APIs), in-line voice control commands, and dictionary facilities.
Each component is introduced in this section and explained in detail in Chapter
3.

Application Programming Interfaces (APIs)

DECtalk Software supports two text-to-speech APIs:

• The DECtalk Software API (DAPI)

• The Microsoft Speech API (SAPI) [Windows 95/98/ME/NT/2000 only]

DAPI is a custom extension to the Multimedia PC (MPC) API specified by the
Windows operating system. The DAPI function set gives you a flexible method
of using and controlling DECtalk Software functionality from within your
application. These functions perform a wide range of tasks associated with
Text-To-Speech systems. See Chapter 1 in the DECtalk Software Reference
Guide for the complete list of DAPI functions.

In addition to the DAPI, DECtalk Software supports the Microsoft Speech API
(SAPI) for Windows 95/98/ME/NT/2000 systems and SAPI Version 5.0 for
Windows 98/ME/NT/2000 systems. This allows DECtalk Software to work as
an OLE server in any OLE application environment. Information about SAPI is
available in the Microsoft Developer Network (MSDN) CD-ROM under the
Microsoft Software Development Kit (SDK). See Chapter 4 in the DECtalk
Software Reference Guide for a list of the SAPI functions supported by DECtalk
Software. For more information about SAPI, refer to Microsoft documentation
and the Microsoft web site.

In-Line Voice Control Commands

DECtalk Software includes in-line commands that control voice characteristics.
You can use these commands to perform simple voice-control operations, such
as changing the speaking rate or speaking voice while DECtalk Software is
speaking.

In-line commands can be inserted into the text entered into the edit window
available in most applications supplied with DECtalk Software. In-line
commands also can be included in data buffers passed to the DECtalk Software

 1-8

Dynamic Link Libraries (DLLs) by way of various TextToSpeech...() API
function calls. For more information, see the DECtalk Software Reference
Guide.

DECtalk Software also has voice-control commands to modify the
characteristics of each voice, control intonation and stress within written text, or
create special effects, such as singing.

In-line commands have special syntax rules and components that you need to
use when you insert them into files. A few simple commands and command
components are illustrated in Figure 1-3. Refer to the DECtalk Software
Reference Guide and online help for more information on in-line commands.

Figure 1-3 In-Line Command Components

[:rate 150]Hello. How are you?

Now I’m [:rate 150][:nb][r ’ iyl iy] thrilled!

å

�

ê

[:rate 150][:nb]Hello. How are you?

Legend

å In-line commands are inserted into ASCII text files, begin with a colon, and are always
inserted between brackets. (The command here tells DECtalk Software to speak this
line at 150 words per minute.) Most commands have parameters. (For example, : rate
150 = rate of 150 words per minute.)

� Two or more commands can be inserted after each other by enclosing each
command within a set of square brackets. (For example, the rate and voice selections
are shown here.)

ê Phonetic spellings of words can be included also. Phonetic spellings are enclosed
within a set of square brackets. (For example, [r ’ iyl iy] for really) Note: if you
want to use phonetic spellings, you must use the [:phoneme arpabet speak on]
command to turn on recognition of phonetic spellings.

Dictionary Facilities

DECtalk Software has two pronunciation dictionaries — a large internal (built-
in) dictionary and a user-defined dictionary. With the large built-in dictionary,
you can easily use many proper names and normally unpronounceable
sequences, such as uppercase initials, in applications. With the user dictionary
build tool, you can load application-specific words or cultural or language-

1-9

specific terms into the user dictionary. A sample user-dictionary file is installed
with the software.

The location of pronunciation dictionaries is determined by the following:

• On Windows systems, if your text-to-speech engine is a dynamic engine,
which uses DLLs, or a static engine, which uses only LIBs, the default
locations of the main and user dictionaries are defined in registry entries, as
presented in Chapter 3.

• On Linux systems, the location of the dictionaries is the DICTIONARIES
directory, as defined in locations.sh in your installation directory.

• On Tru64 UNIX systems, the locations of the dictionaries are given in
dtuser.lib.

Text-to-Speech Server (Windows 95/98/ME/NT/2000 Only)

The Text-to-Speech (TTS) server for Windows makes it possible for any
Windows application that can call Dynamic Data Exchange (DDE) and that
contains ASCII text to speak that text through DECtalk Software.

Under Windows, the TTS server is launched automatically whenever you start
Microsoft Mail or manually whenever you click on the Text-to-Speech server
icon in the DECtalk Software program group.

 1-10

Using the Components

DECtalk Software applications and application-building components are
intended for two specific audiences: the application programmer and the general
user of text-to-speech applications developed with the DECtalk Software API.

Application Programmer

Application
using

DECtalk

Command Set
User Dictionary
Builder

 DECtalk API

Other operating
system specific
programming
services

As a DECtalk Software application programmer, you can use the DECtalk
Software programming aids and API components to create applications that use
DECtalk Software. These applications can incorporate text files and use
DECtalk Software in-line commands as permanent parts of the application.

General User

Abbreviated Command Set

Customized User Dictionary

Application
using

DECtalk

ASCII Text
File

The general user converts ASCII text files to speech by using an application that
incorporates DECtalk Software. By using an abbreviated set of DECtalk
Software in-line commands and the user-defined dictionary, the general user

1-11

can fine-tune the basic pronunciation and voice characteristics defined in the
application.

 1-12

How It Works

DECtalk Software converts ASCII text into speech output through a speech
synthesizer. Two ways to feed text into the speech synthesizer are:

• Programming DECtalk Software API function calls in your own application
program

• Using the DECtalk Dtsample applet user interface (Windows only)

The flow of the text-to-speech process is shown in Figure 1-4.

Figure 1-4 Flow of the DECtalk Software Text-To-Speech Conversion Process

Text Input

➊

Command
and Text
Parser

➋

Letter to
Sound

➌

Phoneme
to Voice
Module

➍

Vocal
Tract

Module

➎

Legend

å Text is selected for processing by DECtalk Software.

� A sentence parser breaks the input stream into separate words and locates some clause
boundaries (indicated by commas and other punctuation marks as well as by special words
loaded in the DECtalk Software internal dictionary). The sentence parser also recognizes
and deals with phonemic symbols and commands that you might have added to the input
text.

A word parser breaks words into their component parts, dividing words into their final
pronounceable forms. Strings of text that do not form pronounceable words are spelled out
letter by letter. A number formatter is used if the text contains numerals. The number
formatter applies the rules for many common number formats and converts the numbers
into words.

ê A dictionary lookup routine searches the pronunciation dictionaries. DECtalk Software has a
built-in dictionary of many commonly used words. DECtalk Software also has a user
dictionary for programmers and general users that can be filled with words specific to an
application. This dictionary and how to load it are described in Chapter 3.

A letter-to-sound module uses a set of pronunciation rules to assign phonemic form and
lexical stress patterns to words not found in the dictionary. See Chapter 3 for more
information on modifying the phonemic form of words, and the DECtalk Software Reference
Guide for enhancing special voice qualities, such as emphasis and singing.

1-13

Legend

� A phrase structure module recombines all phonemic output from the dictionary search and
other modules. Duration of phonemes and pitch commands is computed for the clause, and
appropriate sound variants are selected for those phonemes that can be pronounced in
more than one way.

The phoneme-to-voice module processes clauses passed from the phrase structure
module and converts them to control signals for the speech synthesizer. This module
modifies the clauses by changing the phonemes/allophones into parameters that determine
the natural resonant frequencies of the vocal tract (formants), and sound source amplitudes.
The control parameters are sent to the speech synthesizer for output.

� The DECtalk speech synthesizer computes a speech waveform with acoustic
characteristics that are determined by the synthesizer control commands.

 2-1

Chapter 2 —
Using the Applets to Learn DECtalk

Software Basics

This chapter introduces the basic operations involved in DECtalk Software
voice and program control. If you are a general user, this chapter gives you the
information you need to use the Dtsample, Speak, Say, and User Dictionary
Build Tool applets. If you are an application programmer and not familiar with
DECtalk Software, this chapter introduces you to the basic voice and program
control functions used to control DECtalk Software from within an application
program. Topics include:

• Speaking a text file

• Inserting in-line commands

• Changing the speaking voice

• Changing the speaking rate

• Using the User Dictionary Build Tool

• Using the Speak applet

• Using the Text-to-Speech server from Windows applications

• Using the Say command-line applet

 2-2

Speaking a Text File

The fastest way to start learning about DECtalk Software is by using a DECtalk
sample application, such as the Dtsample applet (Windows only) or the Speak
applet, to convert an ASCII text file to speech. After you start the applet and
speak a text file, you can then learn more about controlling voice characteristics
through in-line commands and the user dictionary, which are covered later in
this chapter.

In this section, Dtsample is used to illustrate speaking a text file. For equivalent
examples that use Speak, see Using the Speak Applet.

Note
The drag and drop technique described in Table 2-1 applies equally to Dtsample and
Speak.

 2-3

Figure 2-1 Speaking a Text File Using the Dtsample Applet

(8)

(9)

(10)

Table 2-1 Speaking a Text File

Task/Location Action Result

Using the Dtsample applet F i le menu

DECtalk Software program
group (1)

Step 1. Double click the Dtsample
applet icon. (2)

The Dtsample applet dialog is
displayed. (3)

 2-4

Dtsample applet dialog (3) Step 2. Pull down the Language
menu and select the
language of your choice.

 Step 3. Pull down the File menu and
select Open. (4)

The Open a File dialog box is
displayed. (5)

Open File dialog box (5) Step 4. Select the file you want
DECtalk Software to speak.
(6)

The file is displayed in the Dtsample
applet dialog.(7)

Start button (8) Step 5. Click the start button. DECtalk Software starts speaking
the file.

Pause and stop buttons (9) (10) Step 6. Click the Pause or Stop
button as needed.

DECtalk Software pauses or stops
the speaking session.

Using drag and drop

Windows Explorer with text file
name visible (not illustrated)

Step 1. Click the file name and drag
to one of the following:

• Dialog box for the
Dtsample applet or the
Speak applet

• Dtsample or Speak icon

The file is spoken.

If you drag the file name to a
DECtalk icon, the application it
represents is opened.

 2-5

Inserting In-Line Voice Control Commands

Before you can use DECtalk Software in-line commands to modify speech
output, you need to know the proper syntax with which to include those
commands into a text file. Figure 2-2 illustrates the rules of DECtalk Software
in-line command syntax. For complete details about DECtalk Software in-line
commands, see the DECtalk Software Reference Guide.

Figure 2-2 Rules for DECtalk Software In-Line Command Syntax

 ➊ [:rate 150][:name Betty]Hello. How are you?

➋ [:rate 150][:nb]Hello. How are you?

➌ [:dv ap 160 pr 50 save][:nv]Hi.

➍ [:dv ap 160 pr 50 save][:nv]Hi.

➎ [:dv ap 160 pr 50 save][:nv]Hi.

➏ [:nb][:np]Hello.

➐ Now I’m [:dv ap 90 pr 130][r ’ iyl iy]
thrilled.

Legend

➊ Enclose every command within brackets.

➋ Some commands provide an alternate form to simplify input. Here the :name command
and its argument Betty can be replaced by the alternate command :nb.

➌ Begin every command with a colon.

➍ Separate each command name and its option or parameter from the command name text
by a valid word boundary marker. The valid word boundary markers are a space and a
tab. A space is used here.

 2-6

Legend

➎ Include several options and parameters within the same brackets if the command allows
more than one option and parameter. In this example, the option and parameter grouping
modifies the [:dv] command.

➏ If you give two conflicting commands, DECtalk Software uses the last command in the
sequence. In this example, DECtalk Software uses Paul’s voice.

➐ If you enable phoneme interpretation by using the [:phoneme arpabet speak on]
command, you can include phonetic spelling for text-to-speech synthesis. The phonetic
spelling replaces the actual spelling and is enclosed within brackets. In this example, the
phonetic spelling of the word really (r ’ iyl iy) is included.

Additional rules for in-line command syntax include the following:

• If the value in a [:dv] command is too low, DECtalk Software uses the
minimum valid value. If the value is too high, it uses the maximum valid
value.

• After you enter a command, that command applies to the remaining text
until it is overridden by another command. For example, the command
[:nk] invokes Kit’s voice on all entered text until you enter another voice-
selection command.

• Invalid commands are ignored. By setting the [:error speak] command,
you can receive an audible warning that an invalid command has been
entered.

• Do not put arpabet parameters within the brackets for another command.

• DECtalk Software interprets text between brackets as phonemes only after
the [:phoneme arpabet speak on] command is sent to the application. If
[:phoneme arpabet speak on] has not been sent, DECtalk Software
interprets the brackets and characters between them literally. The
[:phoneme arpabet speak off] command must be sent with literal
characters if you want to insert brackets in normal text.

• If the command [:phoneme arpabet speak on] is set and you forget the
right bracket (]), DECtalk Software attempts to interpret all text following
the ASCII text as phonemes, skipping over illegal letter combinations. The
resulting text sounds garbled. Enter a right bracket to fix this problem.

 2-7

Changing the Speaking Voice

You can change a speaking voice by inserting DECtalk Software commands
into the edit window of a DECtalk application, such as the Dtsample applet
(Windows only) or the Speak applet. Within the Dtsample applet, you can also
select text and then select a different name from the Voice menu in the
Dtsample applet dialog. Voice changes made with commands are permanent for
the session and remain intact as long as the command remains in the file. Voice
changes made from the menu remain in effect only as long as the current
DECtalk Software session is running.

Each voice selection is inserted into the command [:nX], where X is a value
representing a DECtalk speaking voice. Table 2-2 lists the names and their
corresponding values. Figure 2-3 and Table 2-3 show steps you can make to
change voices.

You can change voices with a command as shown in the following example.

[:nb] Hello. I’m Betty.

You can also change voices in the middle of a sentence.

[:np] This is a demo [:nb] of a sudden change in voice.

If a voice-change request occurs in the middle of a sentence, DECtalk Software
automatically pauses. The pause is the equivalent of inserting a comma, or about
half a second.

[:np] This is a demo, [:nb] of a sudden change in voice.

Table 2-2 DECtalk Voices and Their Associated Values

Name Value Name Value

Paul P Betty B

Harry H Ursula U

Frank F Wendy W

Dennis D Rita R

Kit K

 2-8

Figure 2-3 Changing the Speaking Voice

(1)

(2)

(3)

(4)

Table 2-3 Changing the Speaking Voice

Task/Location Action Result

Using the Dtsample applet Voice menu

Dtsample applet
dialog (1)

Step 1. Select the desired
speaking voice from the
Voice menu. (2)

 Step 2. Press the start button. (3) The entire file or selected section is spoken.

Using in-l ine commands

Dtsample applet
dialog (4)

Step 1. Insert in-line commands in
the text at the points
where you want a new
voice to take effect.(4)

DECtalk Software changes the speaking voice
at the point where you insert commands.

 2-9

Changing the Speaking Rate

DECtalk Software lets you edit text that is displayed in the edit window of a
DECtalk application, such as the Dtsample applet (Windows only) or the Speak
applet, and then play part or all of the edited text. Editing can include selecting,
cutting, pasting, and appending other text files. Figure 2-4 and Table 2-4 show
cutting and pasting, playing selected text, and changing the speaking rate.

You can also increase and decrease the rate at which DECtalk Software speaks
a file or a section of a file.

Figure 2-4 Changing the Speaking Rate

(1)

(3)

(4)

(2)

(6)

(5)

 2-10

Table 2-4 Changing the Speaking Rate

Task/Location Action Result

Edit ing the text

Dtsample applet
dialog (1)

Step 1. Select the range of text you
want to edit. (2)

 Step 2. Use cut, copy, paste, and
delete from the Edit menu (3)
to manipulate the selected text.
You can also insert text and
DECtalk Software commands
by placing the cursor anywhere
in the text and typing.

 Step 3. Click on the Start button. (4) DECtalk Software speaks the edited file in the
new, edited format.

Playing selected text

Dtsample applet
dialog (1)

Step 1. Select the range of text you
want to play. (2)

 Step 2. Click on the right mouse
(MB2 or 3) button.

DECtalk speaks the selected text.

Changing the rate

Dtsample applet
dialog as
DECtalk
Software is
speaking a file
(1)

Step 1. Use the mouse to position the
pointer on the rate slider bar.
Press the left mouse (MB1) and
drag the slider to the left and
wait for the speaking voice
change to occur. Then drag the
slider to the right. (5)

The speed at which DECtalk Software speaks the
file changes. It increases if you drag to the right
and decreases if you drag to the left. The rate in
words per minute is displayed to the right of the
slider bar. Changes in the speaking rate occur only
on a clause boundary after all the previously
queued audio has played.

Dtsample applet
dialog. (1)

Step 2. You can also insert in-line rate
commands in the text. (6)

When the text is played, DECtalk changes the rate
according to the commands.

 2-11

Using the User Dictionary Build Tool

The User Dictionary Build Tool creates a loadable dictionary (.dic) file from a
list of words and their corresponding pronunciations.

The dictionary can then be loaded with a call to the
TextToSpeechLoadUserDictionary() API function or from the File menu in
the Speak applet.

Note
You can use the User Dictionary Build Tool’s Translate menu to create phonemic
translations of words or phrases.

 2-12

Menus and Commands

Figure 2-5 and the accompanying legend illustrate and explain the User
Dictionary Build Tool’s menus and commands.

Figure 2-5 User Dictionary Build Tool

 2-13

Legend

(1) Edit Window

In the edit window, enter word-pronunciation pairs that are not predefined or not pronounced
as desired in the DECtalk Software user dictionary. A word-pronunciation pair is a word,
followed by its phonemic spelling enclosed in square brackets.

(2) File menu

Open... A pop-up dialog box that opens up a dictionary definition file (*.tab).

Close Closes the dictionary definition file. If the entries in the edit window have been
modified, a dialog box asks if you wish to save changes.

Compile Dictionary Compiles the current file to a .dic file with the same name.

Save... A pop-up dialog box that saves the file and calls the compiler to create a dictionary file
(*.dic).

Save as... A pop-up dialog box that lets the user rename the file. This also calls the compiler
to create a dictionary file (*.dic).

Exit Exits the program. If the entries in the edit window have been modified, a dialog box
asks if you wish to save changes.

(3) Edit menu

Undo Undo the previous command.
Cut Cut the selected region.

Copy Copy the selected region.

Paste Paste the selected region.

Delete Delete the selected region.

Select All Select all of the word-pronunciation pairs from the edit window.

Find... A pop-up dialog box that prompts you to search for selected text.

(4) Translate menu

Translates selected text into phonemic spelling.

(5) Language menu

Lists the DECtalk languages. Uninstalled languages are grayed out.

(6) Help menu

Selects the online help.

(7) Pronounce Word button

When clicked, the selected text in the edit window is spoken. If a word-pronunciation pair is
selected, the phonemic pronunciation is used. If only the word is selected, the currently
stored pronunciation is used.

(8) Previous button

When clicked, the previous word-pronunciation pair in the list is spoken.

(9) Next button

When clicked, the next word-pronunciation pair in the list is spoken.

 2-14

Building a User Dictionary

Building a user dictionary is a two-step process. First, you create a .tab source
file with the User Dictionary Build Tool to define the pronunciation of special
words you want to place in the dictionary, as shown in Figure 2-6 and Table
2-5.

Figure 2-6 Creating or Modifying a User Dictionary

Table 2-5 Creating or Modifying a User Dictionary

Task/Location Action Result

DECtalk
Software (1)
program group

Step 1. Double click on the User
Dictionary icon.

The DECtalk Software Dictionary Builder dialog
is displayed. (2)

 2-15

File menu (3) Step 2. Select Open to open an
existing dictionary definition
(.tab) file.

You can also create a new
dictionary definition file by
entering words directly.

The Open a File dialog box is displayed (not
shown). The file you select is displayed in the
edit window.

Edit window Step 3. Enter words that are not predefined or pronounced as desired in the DECtalk
user dictionary. DECtalk needs to know both the word and the phonemic spelling
you want to associate with it.

If you know the phonemic spelling, enter it using the following format:

word [phonemic spelling]

If you do not know the phonemic spelling, enter the word as it sounds, rather
than as it is spelled.

 Step 4. Select the word and click
Translate. (4)

For example, the Yugoslavian
name Jovicic sounds like:

Yoeveecheech

The User Dictionary Build Tool converts
what you entered into a phonemic spelling.

The User Dictionary Build Tool converts the
name to:

[yx’ owv iychiych]

 Step 5. To hear how DECtalk interprets
the phonemic spelling, select it,
and click Pronounce Word. (5).

DECtalk speaks the word.

 Step 6. Besides pronunciation, you can also define word usage.

For example, to define the word soda to be equivalent to pop; define water to be
pronounced with a New England accent; and to take into account the dialectic
regional preferences so that the word sub is called a hero, you would use the
following pronunciation pairs:

Soda [p ' aap]
water [w ‘ aot rr]
sub [hx' iyr ow]

Refer to the Reference Tables and to Using In-Line Commands (available in the
Reference Guide and in online help) for more information on modifying and
enhancing pronunciation, including a complete list of phonemic, stress, and
syntactic symbols.

After you create the .tab source file, you compile the .tab file to produce a .dic
file as shown in Figure 2-7 and Table 2-6. The .dic file can be loaded into a
DECtalk Software session through the Speak applet or an API function call.

 2-16

Figure 2-7 Saving and Compiling the Dictionary

 2-17

Table 2-6 Saving and Compiling the Dictionary

Task/Location Action Result

Saving and compil ing a new dictionary

File menu (1) Step 1. Display the File menu.

If you have not yet
given your file a name,
choose one of the
following actions:

Compile Dictionary (2)

Save (3)

Save As... (4)

The Save dialog box is displayed in all three cases. (5)

Save as dialog
box

Step 2. Navigate to the
location where you
want to save the
dictionary session and
enter a file name. (6)

A success message (7) is displayed, indicating that
both the text file (in .tab format) and a dictionary file (in
.dic format) have been saved.

Saving and compil ing an exis t ing dictionary

File menu (1) Step 1. Choose Open from the
File menu to open an
existing file.

The Open a File dialog box is displayed (not shown).
The dictionary file (.tab file type) you choose is
displayed in the edit window.

 Step 2. Edit the file as
described in Table 2-5.

File menu (1) Step 3. To save the changes
you have made to the
.tab file without
compiling the
dictionary, pull down
the File menu (1) and
click Save (3).

The changes you have made are saved.

File menu (1) Step 4. To save your changes
and compile the
dictionary, pull down
the File menu (1) and
click Compile
Dictionary. (2)

A success message (7) is displayed, indicating that
both the text file (in .tab format) and a dictionary file (in
.dic format) have been saved.

 2-18

Using the Speak Applet

The Speak applet demonstrates the DECtalk Software voice set, as shown in
Figure 2-8 and Table 2-7. Each picture displayed in the Speak dialog represents
one of the nine built-in voices. You can select a specific voice by clicking the
picture. DECtalk Software then uses the selected voice to speak the contents of
a text file displayed in the edit window or from a file you drag and drop into the
edit window of the Speak dialog.

Notes

• The Speak applet is not provided and not supported for Windows CE systems.

• The Speak applet faces display as cartoon characters when using VGA 16-color
mode.

 2-19

Figure 2-8 Using the Speak Applet

 2-20

Table 2-7 Using the Speak Applet

Task/Location Action Result

Edit ing a text f i le and playing selected segments

DECtalk program
group (1)

Step 1. Double-click the Speak icon. The Speak applet dialog (2) displays.

File menu (3) Step 2. Choose Open (4) to choose a text file,
or enter text in the edit window.

The Open A File dialog box displays
(not shown). The file you choose is
displayed in the edit window

Speak applet
dialog (2)

Step 3. Select the range of text you want to edit
or play. (5)

 Step 4. Use the Cut, Paste, and Insert keys or
corresponding commands from the Edit
menu to manipulate the selected text.
For example, cut and paste a single
sentence for DECtalk Software to
speak.

 Step 5. Click the face of the voice you want to
speak. (6)

Edit menu Step 6. Use the right mouse button (MB2 or 3)
to speak a selected region or press the
Play, Pause, and Stop buttons (7) to
play the whole file.

The edited file is spoken.

Changing the speaking rate

Speak applet
dialog while
DECtalk
Software is
speaking a file

Step 1. Use the mouse to position the pointer
on the rate slider button. (8) Press
MB1 and drag the slider to the left and
wait for the speaking rate to slow. Then
move the slider to the right to increase
the rate.

The rate in words per minute displays
to the right of the slider bar. Rate
changes occur only at a clause
boundary and only after all previously
queued audio has played.

Loading a User D ict ionary
File menu (3) Step 1. Select Load User Dictionary. (9) The

current User Dictionary is loaded if
available. Note that the current User
Dictionary is defined in a platform-
specific manner; see Dictionary
Functions (Linux and UNIX) or
Dictionary Functions (Windows).

The Load Dictionary dialog box (not
shown here) is displayed.

 Step 2. Select the User Dictionary you want to
load, and press Enter or click OK.

That dictionary is loaded and remains in
effect until you change the dictionary or
end the session.

 2-21

Saving text as a .wav f i le

File menu (3) Step 1. Pull down the File menu and select
Convert to Wave File. (10) Select
the desired format. (11) Select a file
name for the audio file.

The Convert to Wave File dialog box is
displayed (not shown here). The text
file is saved to the selected file as a
standard .wav file.

Figure 2-9 shows how to highlight a selection of text for speaking.

Figure 2-9 Highlighting Spoken Text from the Speak Applet

(1)

(2)

(4)

(3)

Task/Location Action Result

Highl ighting Spoken Text

Speak applet Edit
menu. (1)

1. Click Highlighting. (2) The Highlighting option is checked.

Speak applet
controls.

2. Click the Start button. (3) As DECtalk speaks the text, each word is
highlighted. (4)

 2-22

Using the Text-to-Speech Server from Windows Applications

On Windows 95, 98, ME, NT, and 2000 systems, you can run DECtalk
Software by way of the Text-To-Speech (TTS) server from any application that
supports Dynamic Data Exchange (DDE). When run from such applications,
you can have DECtalk speak any selected text associated with the application.
For example, DECtalk can be “plugged into” Microsoft Word and then used as
a proofing tool to read entire files or selected sections from those files.

The following section is an example of how to set up and run DECtalk Software
from within a Microsoft Word document. The steps include:

1) Creating a Word macro and associating it with a template

2) Associating the macro with a button, menu selection, or hot key

3) Launching the DECtalk TTS Server and speaking the text

4) Speaking the text from within the document

 2-23

Step 1 — Creating a Word Macro and Associating It with a Template

The first step in running DECtalk Software from a Microsoft Word document is
creating the Word macro that links Word and DECtalk through DDE, as shown
in Figure 2-10 and Table 2-8. You only have to create this macro once and
associate it with a button, hot key, or menu command. If you make the macro
part of a permanent .dot (template) file, DECtalk Software is always available
when you edit a document associated with that template.

Note
This example uses Word Version 7.0. Using other versions of Word, the displays
and the specific steps will differ somewhat, but the overall procedure will apply.
Refer to the Help for your version of Word for the specific steps required to create
Word macros.

 2-24

Figure 2-10 Creating a Word Macro

Table 2-8 Creating a Word Macro

Task/Location Action Result

Word dialog Step 1. Select Macro from the Tools
Menu. (1)

The Macro dialog box is displayed. (2)

Macro dialog
box (2)

Step 2. Enter the name of the macro
you are going to create. (3)

Macro dialog
box (2)

Step 3. Click the Create button. (4) The Macro creation window is displayed.(5)

 2-25

Task/Location Action Result

Macro creation
window (5)

Step 4. Insert the macro code. The word.txt file located in your DECtalk installation directory
offers two versions of the appropriate macro code. For Word Version 7, insert the
following code from word.txt:

Sub DECtalkTTSmacro()

Dim Response, rightNow, diffTime, chan

If Tasks.Exists("TTSsrv") = 0 Then

 StatusBar = "Starting DECtalk Server"

 System.Cursor = wdCursorWait

 Response = Shell("TTSSRV.EXE", 0)

 rightNow = Now()

 diffTime = 0

 While diffTime < 0.00003

 diffTime = Now() - rightNow

 Wend

 StatusBar = " "

 System.Cursor = wdCursorNormal

 If Response = 0 Then

 Response = MsgBox("Cannot find TTSSRV.EXE in the path",
vbYesNo, "Speak")

 GoTo FINIS

 End If

End If

chan = DDEInitiate(App:="TTSserver", Topic:="Speak")

If chan = 0 Then

 Response = MsgBox("Unable to connect to TTSSRV.EXE", vbYesNo,
"Speak")

 GoTo FINIS

Else

 DDEPoke channel:=chan, Item:="Speak", Data:=Selection.Text

 DDETerminate channel:=chan

End If

FINIS:
End Sub

File menu Step 5. On the File menu, click Close
(6). Click Yes (7) when you
are asked if you want to keep
changes to the macro.

The macro is created.

 2-26

Step 2 — Associating the Word Macro with a Toolbar Button

After you create a macro to run DECtalk from within a Microsoft Word
document (step 1), you can associate the macro with a button on a toolbar as
shown in Figure 2-11 and Table 2-9. You can also associate the macro with a
menu selection from one of the pull-down menus or with a power-key
combination from the keyboard. This section illustrates how to link the macro
with a button on a toolbar.

Figure 2-11 Associating the Word Macro with a Toolbar Button

 2-27

Table 2-9 Associating the Word Macro with a Toolbar Button

Task/Location Action Result

Word dialog
Tools menu

Step 1. Select Customize. The Customize dialog box is displayed. (1)

Customize dialog
box

Step 2. Select the Toolbars tab and
click on Macros (2).

 Step 3. Locate the macro you
created and click the
name. (3)

 Step 4. Place the cursor (arrow) on
the macro name, press and
hold MB1 and drag the
cursor to the toolbar in
which you want the
DECtalk macro
placed.(4)

Word toolbar you
select

Step 5. An outlined box appears
where Word will place the
new button. (4)

The Custom Button box is displayed. (5)

Custom button
dialog box (5)

Step 6. Click the button you want
to associate with the
DECtalk macro. (6)

The button is outlined.

 Step 7. Click Assign. (7) The new button now appears in the gray outlined
box in the toolbar.

 2-28

Step 3 — Launching and Configuring the DECtalk TTS Server

After you associate the DECtalk macro with a button (Step 2), you must have
the Text-to-Speech (TTS) server running before DECtalk can speak selected
sections of text from an application, as shown in Figure 2-12 and Table 2-10.
This section outlines how to start the TTS server and configure the TTS server
for speaker selection, User Dictionary selection, and speaking rate.

The TTS server is launched by the Word macro and is displayed as a small
window. You can control the speaking voice and speaking rate from the
Window menu.

Applications can access the TTS server using the service name “TTSserver.”
The service topic names are “Speak,” “LoadDictionary,” and
“UnloadDictionary.” Each of these topics requires a string that is either text to
be spoken (for “Speak”) or a dictionary file string.

Figure 2-12 Launching and Configuring the DECtalk Server

 2-29

Table 2-10 Launching and Configuring the DECtalk TTS Server

Task/Location Action Result

Microsoft Word
editing session

Step 1. Click the TTS Server icon (1)
you created when you
associated your Word macro
with a toolbar button. (See Table
2-9.)

The TTS Server dialog is displayed. (2)

TTS Server
dialog (2)

Step 2. Pull down the Window menu (3)
 and select Configure... (4)

The Change Settings dialog box is
displayed. (5)

Change Settings
dialog box (5)

Step 3. Click the desired speaking voice
and speaking rate. (6)

 Step 4. Click on the Test button (7) to
preview your selections.

 Step 5. Adjust the settings until you
produce the desired result.

 Step 6. Click OK. (8) The selected settings remain in effect as
the default settings until they are changed.

(Note: In-line commands in selected text
played through the TTS server will override
the defaults.)

 2-30

Step 4 — Speaking Microsoft Word Text With the TTS Server

Once the TTS server is launched by the Word macro and you configure it for
the desired speaking voice, speaking rate, and with a User Dictionary file (step
3), you can have DECtalk speak selected sections of text from an opened file, as
shown in Figure 2-13 and Table 2-11.

Figure 2-13 Speaking Text in a Word File With the TTS Server

 2-31

Table 2-11 Speaking Microsoft Word Text With the TTS Server

Task/Location Action Result

Microsoft Word
dialog with file
opened (1)
and the TTS
Server macro
button visible
(2)

Step 1. Select a range of text for
DECtalk to speak. (3)

 Step 2. Click the TTS Server button
(2)

DECtalk speaks the selected text and displays
the TTS Server dialog. (4)

TTS Server
dialog (4)

Step 3. Click the Pause or Stop
button if you want to pause or
stop DECtalk as it is
speaking the text.

Note: When you pause the
server, all queued text
remains queued up even
though you deselect it in the
Word document. When you
stop the server, all queued
text is flushed from the
DECtalk system.

If the server is not accessible, an error is
returned. (5)

 2-32

Using the Say Command-Line Applet

The DECtalk Say command-line applet lets you run DECtalk Software from the
operating system command prompt window. Say provides many of the standard
DECtalk input and output options available in the Speak and Dtsample applets
and the DECtalk API. The command syntax is as follows:

say [options] [text]

Notes

• The Say applet is not provided and not supported for Windows CE systems.

• On UNIX systems, the say command must be entered in lower case letters.

Help Options

-h or -? Write this file to the console. This option cancels any others on the
command line.

Output Options

-w outFile Convert the text to the specified .wav file instead of speaking to
the sound device.

-l[t] outFile Turn on text logging, which logs all input text to a file. This text
includes any pre- and post- commands as well as commands sent
to DECtalk by the Say program itself.

Because this is the default logging mode, the ’t’ immediately
following the ’-l’ is optional.

-ls outFile Turn on syllable logging, which logs each syllable to a file.

-lp outFile Turn on phoneme logging, which converts the input text to
phonemes. This is useful if you want to get DECtalk Software to
sing. You convert the text to phonemes and then insert the tone
commands into the phoneme file.

If no output options are specified, Say sends its output to the
installed sound device, usually a sound card. Only one output
option can be specified; if you specify more than one, the last one
on the command line is used.

Input Options

-pre preText Text to be passed to DECtalk Software before the normal input.
The prefix text is forced out before the input text is read.

 2-33

-post postText Text to be passed to DECtalk Software after the normal input.

This is useful for passing terminating commands to DECtalk
Software that normally are not part of the input. If the postfix text
has spaces, it must be enclosed in quotes. An example is
"[:phoneme off]" or "The End".

The normal input is forced out before the postfix text is read.

text Text appearing on the command line is spoken. The text to be
spoken can come either from standard input or from the command
line.

Anything on the command line that is not an option is interpreted
as text, as is anything following it on the command line. In other
words, text to be spoken must appear on the command line after
all options.

If the first word in the text has a dash (-) or slash (/) as its first
character, you must precede it with another dash or slash. For
example, to tell DECtalk to say the number -123, you would type
the command:

say --123

This is necessary to avoid having Say interpret the number as a
command line option. If you embed DECtalk commands into your
text, you must enclose them in quotes if they contain spaces.

This is necessary because Say treats each space-delimited
command-line argument as a separate word, while DECtalk
commands must be processed as single words by the Say
program.

If no text is specified, Say takes its input from the standard input.
For example, you could have Say speak a directory listing in
Betty’s voice by typing the following:

dir | say -pre "[:nb]"

Alternatively, you could just type the following command

say

Then enter text at the console. In this case, Say speaks each line
after you press Enter, and exits after you press Ctrl/x. If you want
Say to take its input from a file, use file redirection as in the
following example, which reads the file foo.txt in Harry’s voice:

say -pre "[:nh]" < foo.txt

Dictionary Options

-d userDict Loads the specified User Dictionary before speaking. This
dictionary is loaded in place of any default User Dictionary
determined by DECtalk.

 3-1

Chapter 3 —
Introduction to the DECtalk Software

API

This chapter introduces the DECtalk Software API (DAPI) and explains how to
use the API to write application programs. This API is designed to be extensible
for future text-to-speech growth while still being easy to use. The current
DECtalk Software implementation supports multiple instances of DECtalk
Software per processor.

The DECtalk Software API functions give you a flexible method for
manipulating the various parameters of DECtalk Software functionality from
within your application. These functions perform a wide range of tasks
associated with the text-to-speech system and are listed by function in Table
3-1.

Note (Windows Only)

In addition to the DAPI, DECtalk Software supports the Microsoft Speech API (SAPI)
for Windows 95/98/ME/NT/2000 systems and SAPI Version 5.0 for Windows
98/ME/NT/2000 systems. This allows DECtalk Software to work as an OLE server in
any OLE application environment. Information about SAPI is available in the
Microsoft Developer Network (MSDN) CD-ROM under the Microsoft Software
Development Kit (SDK). See Chapter 4 in the DECtalk Software Reference Guide
for a list of SAPI functions supported by DECtalk Software. For more information or
documentation on SAPI, contact Microsoft.

 3-2

Table 3-1 Text-To-Speech Functions by Category

Functions Purpose

Core API

TextToSpeechStartup() Initializes and starts up text-to-speech system.

• In Windows, the user defines the
window handle to which post
messages can be sent.

• In Linux and Tru64 UNIX, the user
defines the callback routine.

The calling application can then receive index
marks, memory buffers, or status information
through the above operating system dependent
mechanism.

TextToSpeechStartupEx() Initializes and starts the text-to-speech system.
The user defines the callback routine that can
be called when index marks, memory buffers,
or status information needs to be sent to the
calling application.

TextToSpeechSpeak() Speaks text from a buffer.

TextToSpeechShutdown() Shuts down the text-to-speech system.

Audio Output Control

TextToSpeechPause() Pauses output.

TextToSpeechResume() Resumes output.

TextToSpeechReset() Purges the TTS syatem and stops output.

Blocking Synchronization

TextToSpeechSync() Synchronizes to the text stream.

Control and Status

TextToSpeechSetSpeaker() Selects one of nine speaking voices.

TextToSpeechGetSpeaker() Returns the last speaking voice to have
spoken.

TextToSpeechSetRate() Sets the speaking rate of the text-to-speech
system.

TextToSpeechGetRate() Returns the speaking rate of the text-to-speech
system.

TextToSpeechSetLanguage() Sets the language to be used. (not supported)

TextToSpeechGetLanguage() Returns the language in use. (not supported)

TextToSpeechGetStatus() Gets the status of the text-to-speech system.

 3-3

Functions Purpose

TextToSpeechGetCaps() Retrieves the capabilities of the text-to-speech
system.

Special Text-To-Speech Mode

TextToSpeechOpenWaveOutFile() Opens a file for output. TextToSpeechSpeak()
writes audio data in wave format to this file.

TextToSpeechCloseWaveOutFile() Closes the specified wave file and returns the
text-to-speech system to its startup state.

TextToSpeechOpenLogFile() Opens a log file. TextToSpeechSpeak() writes
text, phonemes, or syllables to this file.

TextToSpeechCloseLogFile() Closes the specified log file and returns the
text-to-speech system to its startup state.

TextToSpeechOpenInMemory() Produces buffered speech samples in wave
format whenever TextToSpeechSpeak()
function is called. The calling application is
notified when memory buffer is filled.

TextToSpeechCloseInMemory() Returns the text-to-speech system to its
startup state.

TextToSpeechAddBuffer() Adds a shared-memory buffer allocated by the
calling application to the memory buffer list.

TextToSpeechReturnBuffer() Returns the current shared-memory buffer.

Loading and Unloading a User D ictionary

TextToSpeechLoadUserDictionary() Loads a user dictionary.

TextToSpeechUnloadUserDictionary() Unloads a user dictionary.

 3-4

The Core API Functions

The core DECtalk Software API functions are:

• TextToSpeechStartup() and TextToSpeechStartupEx(), known as the
startup functions, allocate system resources.

• TextToSpeechStartup(), which is operating-system dependent, has
different calling parameters. On Linux and UNIX, a callback routine may
be defined; on Windows, a window handle can be passed to the
TextToSpeechStartup() call.

• TextToSpeechStartupEx(), which works the same way on all platforms,
allows a callback routine to be passed.

• TextToSpeechSpeak() queues text to the system.

• TextToSpeechShutdown() returns all system resources allocated by the
startup functions.

The simplest application might use only these functions.

TextToSpeechSpeak

The TextToSpeechSpeak() function is used to pass a null terminated string of
characters to the text-to-speech system. The system queues all characters up to
the null character. If the TTS_FORCE argument is not used in the call to this
function, then the queued characters are seamlessly concatenated with
previously queued characters. The TTS_FORCE argument is used to force a
string of characters to be spoken even though the string might not complete a
clause. For example:

TextToSpeechSpeak(phTTS, "This will be spoken. ", TTS_NORMAL);

This text is spoken immediately by the system because it is terminated by a
period and a space. These last two characters are one way to create a clause
boundary.

TextToSpeechSpeak(phTTS, "This will be spok", TTS_NORMAL);

This produces output only after the following line of code executes to complete
the phrase.

TextToSpeechSpeak(phTTS, "en. ", TTS_NORMAL);

 3-5

Finally, a nonphrase string can be forced to be spoken by using the
TTS_FORCE argument.

TextToSpeechSpeak(phTTS, "This will be spok", TTS_FORCE);

Note that the word spoken is not pronounced correctly in this case even if the
final characters, en are queued immediately afterward.

The TTS_FORCE argument causes the previous line to be spoken before taking
any subsequently queued characters into account.

Important Text-Queuing Information

It is important that all sentences are separated with a space, new line, or line
feed character. To make sure of this, it is recommended that a space character is
routinely included after the final punctuation in a sentence. An example of what
happens without this is shown below:

TextToSpeechSpeak(phTTS, "They are tired.", TTS_NORMAL);

TextToSpeechSpeak(phTTS, "I am Cold.", TTS_NORMAL);

Because there is no space, the text-to-speech system processes the following
string:

"They are tired.I am Cold."

 The string, tired.I, will be pronounced incorrectly because the system treats it
as one item instead of two words.

Clause-Based Synthesis

DECtalk Software processes all text on a clause basis. A clause is defined as a
group of words terminated by a period, question mark, exclamation point,
question mark, semicolon, or a colon and followed by white space. If you send
DECtalk Software a string of text with NO terminator, it goes into an infinite
loop waiting for a clause terminator. The Sync in-line command can be used to
complete a clause without using a terminator.

 3-6

Callback Routines and Window Procedures

After TextToSpeechSpeak() is called, the text-to-speech system can notify the
calling application in one of two ways. On Tru64 UNIX, the information can be
sent back through the callback routine defined in the startup function. On
Windows, the information is passed back through window messages or callback
routines, depending on which startup function was called. See the DECtalk
Software Reference Guide for more information on startup functions.

Callback routines should not call TextToSpeech…() functions. If a callback
routine does call TextToSpeech…() functions, a crash may occur in the
application calling DECtalk Software.

Both the window procedures and the callback routines have a message type and
the WPARAM and the LPARM parameters. There are three message types
defined: one for error and status messages, one for index marks, and one to
return memory buffers when using the TextToSpeechOpenInMemory()
function. The WPARAM and the LPARAM parameters contain specific
information, based on the message type.

Phoneme Notifications

Phoneme notifications are sent using the standard notification method (callback
or message). The message identifier is the DECtalk_Visual_Message registered
window message. The data portions of the message contain a structure that
indicates the current phoneme, the next phoneme (not yet implemented), and the
duration of the current phoneme.

The callback (and message) parameters are as follows:

• uiMsg DECtalk_Visual_Message

• lParam1 A DWORD that maps the dwData part of the
PHONEME_TAG structure

• lParam2 The time, in system milliseconds (timeGetTime()),
when the phoneme started

 3-7

The union PHONEME_TAG (from ttsapi.h) defines the data format for the
phoneme part of the message. The following is included for reference, but the
definitions always should be taken from the ttsapi.h file.

typedef struct {
 UCHAR cThisPhoneme; // current phoneme
 UCHAR cNextPhoneme; // next phoneme, if known
 WORD wDuration; // duration in milliseconds
} PHONEME_MARK;

typedef union {\
 PHONEME_MARK pmData;
 DWORD dwData
} PHONEME_TAG

The cThisPhoneme and cNextPhoneme fields are ASCII printable single-
character phoneme identifiers. The phoneme identifiers are specific to each
language. See the DECtalk Software Reference Guide for the phoneme
identifiers for cThisPhoneme and cNextPhoneme.

An example callback routine to show phoneme notification is as follows:

VOID TTSCallbackRoutine (LONG lParam1,
 LONG lParam2,
 DWORD dwInstanceParam,
 UINT uiMsg)
{
 PHONEME_TAG ptPhoneme; // place to put the phoneme data..
 ptPhoneme.dwData = lParam2;
 fprintf(fpLogfil,”{%ld} “,timeGetTime());
 if (uiMsg == uiID_Index_Msg)
 {
 fprintf(fpLogfil,
 “ [Index] p1=%081x p2=%081x i=%081x”,
 lParam1, lParam2, dwInstanceParam);
 // watch for index marks..
 if (lParam2 == 1)
 uiSystemState = TEXT_STARTED;
 if (lParam2 == 2)
 uiSystemState = TEXT_DONE;
 }
 else if (uiMsg == uiID_Error_Msg)
 {
 fprintf(fpLogfil,
 “ [Error] p1=%081x p2=%081x i=%081x”,
 lParam1, lParam2, dwInstanceParam);
 }
 else if (uiMsg == uiID_Buffer_Msg)
 {
 fprintf(fpLogfil,
 “ [Buffer] p1=%081x p2=%081x i=%081x”,
 lParam1, lParam2, dwInstanceParam);
 }

 3-8

 else if (uiMsg == uiID_Visual_Msg)
 char szThisPhoneme[10]=””;
 char szNextPhoneme[10]=””;
 fprintf(fpLogfil,
 “ [Visual] p1=%081x p2=%081x i=%081x”,
 lParam1, lParam2, dwInstanceParam);
 // decode it..
 if (ptPhoneme.pmData.cThisPhoneme ==’\0’)
 {
 // null
 strcpy (szThisPhoneme,”<null>”);
 }
 else
 {
 szThisPhoneme[0]=ptPhoneme.pmData.cThisPhoneme;
 szThisPhoneme[1]=’\0’;
 }
 if (ptPhoneme.pmData.cNextPhoneme ==’\0’)
 {
 // null
 strcpy (szNextPhoneme,”<null>”);
 }
 else
 {
 szNextPhoneme[0]=ptPhoneme.pmData.cThisPhoneme;
 szNextPhoneme[1]=’\0’;
 }
 fprintf(fpLogfil,
 “ time: %ld this:%s next:%s expected at %ld”,
 lParam1,
 szThisPhoneme,
 szNextPhoneme,
 timeGetTime()+ptPhoneme.pmData.wDuration);
 }
 else
 {
 fprintf(fpLogfil,
 “ [??] msg=%081x, p1=%081x, p2=%081x, i=%081x”,
 (DWORD)uiMsg, lParam1, lParam2,

dwInstanceParam);
 }
 fprintf(fpLogfil, “\n”);

}

 3-9

Error Messages

The message type for error and status messages is defined as follows:

• For Callback Routines:

uiID_Error_Message = TTS_MSG_STATUS;

• For Window Messages:

uiID_Error_Message =
RegisterWindowMessage("DECtalkErrorMessage");

One of the error codes listed below, defined in the ttsapi.h file, is contained
in the WPARAM parameter. The LPARAM parameter contains a value of type
MMRESULT. The values can be found in the ttsapi.h file.

Error Code Values

#define ERROR_IN_AUDIO_WRITE

#define ERROR_OPENING_WAVE_OUTPUT_FILE

#define ERROR_GETTING_DEVICE_CAPABILITIES

#define ERROR_READING_DICTIONARY

#define ERROR_WRITING_FILE

#define ERROR_ALLOCATING_INDEX_MARK_MEMORY

#define ERROR_OPENING_WAVE_FILE

#define ERROR_BAD_WAVE_FILE_FORMAT

#define ERROR_UNSUPPORTED_WAVE_FILE_FORMAT

#define ERROR_UNSUPPORTED_WAVE_AUDIO_FORMAT

#define ERROR_READING_WAVE_FILE

#define TTS_AUDIO_START

#define TTS_AUDIO_STOP

Index Mark Messages

The message type for index marks is defined as follows:

• For Callback Routines:

uiID_Index_Message = TTS_MSG_INDEX_MARK;

 3-10

• For Window Messages:

uiID_Index_Message =
RegisterWindowMessage("DECtalkIndexMessage");

The LPARAM parameter contains the index mark value. Note that the index
mark information can also be returned in the buffer message. This happens
when the text-to-speech system is in the speech-to-memory mode as a result of
the TextToSpeechOpenInMemory() call. See Special Text-To-Speech Modes
for more information on this topic..

Buffer Messages

The message type for buffered speech samples is defined as follows:

• For Callback Routines:

uiID_Buffer_Message = TTS_MSG_BUFFER;

• For Window Messages:

uiID_Buffer_Message =
RegisterWindowMessage("DECtalkBufferMessage");

A pointer to the returned memory buffer is contained in the LPARAM
parameter. Additional information about index marks and phonemes may also
be returned here. See Return of Memory Buffer for additional details on what
information gets returned.

 Callback Routine Example

VOID main()

{

 LPTTS_HANDLE_TAG phTTS;

 TextToSpeechStartupEx(&phTTS, WAVE_MAPPER,REPORT_OPEN_ERROR,
Callback, 0);

}

VOID Callback(LONG lParam1, LONG lParam2, DWORD dwCallbackParameter,
UINT uiMsg)

{

 if (uiMsg == TTS_MSG_STATUS)

 {

 // lParam1 contains error code

 // lParam2 contains value of MMRESULT

 }

 3-11

 else if (uiMsg == TTS_MSG_INDEX_MARK)

 {

 // lParam2 contains index mark

 }

 else if (uiMsg == TTS_MSG_BUFFER)

 {

 // lParam2 contains Pointer to buffer

 }

}

 Window Procedure Example

static UINT uiID_Error_Message = 0;

static UNIT uiID_Buffer_Message = 0;

static UNIT uiID_Index_Message = 0;

// Window Procedure

VOID MyWndProc(LONG lParam1, LONG lParam2, DWORD dwCallbackParameter,
UINT uiMsg)

{

 if (uiMsg == uiID_Error_Message)

 {

 // lParam1 contains error code

 // lParam2 contains value of MMRESULT

 }

 else if (uiMsg == uiID_Index_Message)

 {

 // lParam2 contains index mark

 }

 else if (uiMsg == uiID_Buffer_Message)

 {

 // lParam2 contains Pointer to buffer

 }

}

VOID main()

{

 LPTTS_HANDLE_TAG phTTS;

 3-12

 TextToSpeechStartupEx(&phTTS, WAVE_MAPPER, REPORT_OPEN_ERROR,
MyWndProc, 0);

 // Registering messages to report DECtalk asynchronous events

 uiID_Error_Message = RegisterWindowMessage("DECtalkErrorMessage");

 // Callback message is registered indicating index marks

 uiID_Index_Message = RegisterWindowMessage("DECtalkIndexMessage");

 // Callback message is registered indicating DECtalk has filled up
an audio buffer

 uiID_Buffer_Message = RegisterWindowMessage("DECtalkBufferMessage");

}

 3-13

Audio Output Control Functions

The audio output control functions are used to:

• Pause the audio output

• Resume output after pausing

• Reset the text-to-speech system

An application can control speech output using TextToSpeechPause(),
TextToSpeechResume(), and TextToSpeechReset(). A reset discards all
queued text and stops and discards all queued audio. If the application calls
TextToSpeechOpenInMemory() to store speech samples in memory, a reset
causes all buffers to be returned to the application.

 3-14

Blocking Synchronization Function

The TextToSpeechSync() function blocks execution of the application until all
text previously queued by the TextToSpeechSpeak() function is spoken. After
the blocking synchronization function is called, there is no way to abort until all
text is processed. This could take hours if there is a great deal of text queued.
Non-blocking synchronization can be provided using the Index Mark in-line
command.

 3-15

Control and Status Functions

The control and status functions described in Table 3-2 provide additional
information for the text-to-speech system.

Table 3-2 API Control and Status Functions

Function Description

TextToSpeechSetSpeaker() Sets the speaker’s voice, which becomes active at the
next clause boundary.

TextToSpeechGetSpeaker() Returns the value of the last speaker to have spoken.

TextToSpeechSetRate() Sets the speaking rate, which becomes active at the
next clause boundary.

TextToSpeechGetRate() Gets the speaking rate.

TextToSpeechSetLanguage() Sets the text-to-speech system language. Refer to the
ttsapi.h file for a list of valid languages, e.g.
TTS_AMERICAN_ENGLISH. (not supported)

TextToSpeechGetLanguage() Returns the current text-to-speech system language.
(not supported)

TextToSpeechGetStatus() Returns various text-to-speech system parameters,
such as the number of characters in the text pipe, the
ID of the wave output device, and a Boolean value that
indicates whether the text-to-speech system is
currently speaking or silent.

TextToSpeechGetCaps() Returns the capabilities of the text-to-speech system,
which includes the version number of the system, the
number of speakers, the maximum and minimum
speaking rate, and the supported languages.

 3-16

Special Text-To-Speech Modes

After the startup function is called by an application, the application then can
call TextToSpeechSpeak() to speak text. This converts text-to-speech and
sends the speech sample to an audio device, depending on the setting of the
dwFlags field in the startup routine.

The DECtalk Software API also provides alternatives for the speech samples by
allowing the user to select one of the special text-to-speech modes. The special
text-to-speech mode functions allow the speech samples to be written to a Wave
file; converted to text, phonemes, or syllables and stored in a log file; or saved
in memory buffers to be passed back to the calling application. Each mode-
switch function has a corresponding function to return the text-to-speech system
to the startup state. These functions are listed in Table 3-3.

Table 3-3 Special Text-To-Speech Modes

Open Function Mode Close Function

TextToSpeechOpenWaveOutFile() wave-file TextToSpeechCloseWaveOutFile()

TextToSpeechOpenLogFile() log-file TextToSpeechCloseLogFile()

TextToSpeechOpenInMemory() speech-to-memory TextToSpeechCloseInMemory()

The text-to-speech system must be in the startup state before calling any of the
open functions listed in Table 3-3. The corresponding close functions return the
system to the startup state.

Wave-File Mode

After calling the startup function, an application can call
TextToSpeechOpenWaveOutFile(). This call blocks until all previously
queued text is processed. After the call returns, all text subsequently queued by
the TextToSpeechSpeak() function is converted to speech samples and written
into a wave file. The TextToSpeechCloseWaveOutFile() call blocks until the
speech from all previously queued text is written to the file.

Log-File Mode

After calling the startup function, an application can call the
TextToSpeechOpenLogFile() function. This call blocks until all previously
queued text is processed. After the call returns, all text subsequently queued by
the startup function is written to a log file as text, phonemes, or syllables. The

 3-17

phonemes and syllables are written using the arpabet phoneme alphabet. The
TextToSpeechCloseLogFile() function terminates phoneme logging and blocks
until the speech from all previously queued text is processed.

Speech-To-Memory Mode

After calling the startup function, an application can call the
TextToSpeechOpenInMemory() function. This call blocks until all previously
queued text is processed. After the call returns, all text subsequently queued by
the TextToSpeechSpeak() function is converted to speech and stored in the
memory buffers supplied by the TextToSpeechAddBuffer() call. The
TextToSpeechCloseInMemory() function blocks until the speech from all
previously queued text is processed.

When a memory buffer is completed, the buffer is returned to the calling
application. See Callback Routines and Window Procedures for more
information about passing data back to the calling application.

Initialization of Memory Buffers

A memory buffer is a TTS_BUFFER_T structure. This structure and the
elements of its lpData, lpPhonemeArray, and lpIndexArray members must be
allocated. (Note that these last two pointers can be set to NULL optionally if
they are not used by the application.)

• The lpData element points to a byte array. The
dwMaximumBufferLength element must be set to the length of this array.

• If the lpPhonemeArray element is set to NULL, no phonemes are returned.
Otherwise, the lpPhonemeArray element must point to an application-
allocated array of structures of type TTS_PHONEME_T. The length of this
array must be copied into the dwMaximumNumberOfPhonemeChanges
element.

• If the lpIndexArray element is set to NULL, no index marks are returned.
Otherwise, the lpIndexArray element must point to an application-
allocated array of structures of type TTS_INDEX_T. The length of this
array must be copied into the dwMaximumNumberOfIndexChanges
element.

 3-18

 TTS_BUFFER_T Structure (ttsapi.h)

This structure is allocated by the calling application and passed to the text-to-
speech system through the TextToSpeechAddBuffer() function.

typedef struct TTS_BUFFER_TAG
{
 LPSTR lpData;
 LPTTS_PHONEME_T lpPhonemeArray;
 LPTTS_INDEX_T lpIndexArray;
 DWORD dwMaximumBufferLength;
 DWORD dwMaximumNumberOfPhonemeChanges;
 DWORD dwMaximumNumberOfIndexMarks;
 DWORD dwBufferLength;
 DWORD dwNumberOfPhonemeChanges;
 DWORD dwNumberOfIndexMarks;
 DWORD dwReserved;
} TTS_BUFFER_T;

typedef TTS_BUFFER_T * LPTTS_BUFFER_T;

 TTS_PHONEME_T Structure (ttsapi.h)

This structure is used to store phoneme, stress, and syntactic codes of the speech
sample. Refer to Phonemic Symbols and to Stress and Syntactic Symbols in the
DECtalk Software Reference Guide for a detailed list of these symbols.

typedef struct TTS_PHONEME_TAG
{
 // Phoneme, Stress or Syntactic symbols
 DWORD dwPhoneme;

 // Indicates which sample in the memory buffer
 // corresponds to the phoneme symbol
 DWORD dwPhonemeSampleNumber;

 // Duration of phoneme symbol in milliseconds
 DWORD dwPhonemeDuration

 DWORD dwReserved;
} TTS_PHONEME_T;

typedef TTS_PHONEME_T * LPTTS_PHONEME_T;

 TTS_INDEX_T Structure (ttsapi.h)

This structure is used to store index marks defined by the Index Mark in-line
command. Refer to the Index Mark in-line command in the DECtalk Software
Reference Guide for information on the syntax and uses of index marks.

typedef struct TTS_INDEX_TAG
{

 3-19

 // Index Mark value
 DWORD dwIndexValue;

 // Indicates which sample in the memory buffer
 // corresponds to the index mark value
 DWORD dwIndexSampleNumber;

 DWORD dwReserved;
} TTS_INDEX_T;

typedef TTS_INDEX_T * LPTTS_INDEX_T;

 TTS_CAPS_T Structure (ttsapi.h)

This structure is used by the TextToSpeechGetCaps() function to store
language and proper name support, the sample rate, the minimum and maximum
speaking rates, the number of predefined speaking voices, the character-set
supported, and the version number.

typedef struct TTS_CAPS_TAG
 {
 DWORD dwNumberOfLanguages;
 LPLANGUAGE_PARAMS_T lpLanguageParamsArray;
 DWORD dwSampleRate;
 DWORD dwMinimumSpeakingRate;
 DWORD dwMaximumSpeakingRate;
 DWORD dwNumberOfPredefinedSpeakers;
 DWORD dwCharacterSet;
 DWORD Version;
 } TTS_CAPS_T;

 typedef TTS_CAPS_T * LPTTS_CAPS_T;

The lpLanguageParamsArray element is a pointer to an array of structures of
type LANGUAGE_PARAMS_T. The dwNumberOfLanguages element
contains the number of elements in this array. The dwLanguage element of
each structure in this array equals one of the supported languages. The
dwLanguageAttributes element of each structure can contain the following
constant, defined in include file ttsapi.h:

PROPER_NAME_PRONUNCIATION

 Return of Memory Buffers

When the memory buffer is completed, it is returned to the calling application.
A memory buffer is considered to be completed when any one of the following
occurs:

• The memory buffer, which is pointed to by the lpData field, is filled.

 3-20

• The phoneme array is filled. Refer to the DECtalk Software Reference
Guide for more information on the phoneme codes.

• The index mark array is filled. Refer to DECtalk Software Reference Guide
for more information on the index marks.

• The TTS_FORCE argument is used in the call to TextToSpeechSpeak().

The application must not modify any buffer passed to the text-to-speech system
by the TextToSpeechAddBuffer() function until the buffer is returned from the
text-to-speech system to the calling application. The application then owns the
buffer. If no buffers are available, the system blocks. If the application is
processing relatively long passages of text, the application should queue several
buffers and then requeue each buffer after finishing with that buffer, so that the
system is not idle.

A call to TextToSpeechReset() returns all buffers to the application. The
TextToSpeechReturnBuffer() function forces the return of the current memory
buffer, whether it is filled or not. This function might not be required by most
applications. It is included so an application can obtain the last buffer without
forcing that buffer to be sent with the TTS_FORCE argument in the
TextToSpeechSpeak() function.

When the memory buffer, a TTS_BUFFER_T structure, is returned to the
calling application, it contains the following return values:

Parameter Value

dwBufferLength Number of bytes of audio samples.

lpData Pointer to the audio sample data.

dwNumberOfPhonemeChanges Number of phoneme changes.

lpPhonemeArray Pointer to the phoneme information.

dwNumberOfIndexMarks Number of index marks.

lpIndexArray Pointer to the index mark
information.

The index and phoneme arrays each contain a time stamp in the form of a
sample number. This sample number is initialized at zero at startup and after
each call to TextToSpeechReset(). The phoneme array also contains the current
phoneme duration in frames. Each frame is approximately 6.4 milliseconds.

 3-21

Dictionary Functions (Linux and UNIX)

DECtalk Software comes with a main dictionary, which is a compiled list of
words and their associated phonemic interpretation. This main dictionary is
loaded during the startup function. In addition to a main dictionary, users can
create their own user dictionaries and access them using the
TextToSpeechLoadUserDictionary() and
TextToSpeechUnloadUserDictionary() functions.

Creating a User Dictionary

DECtalk Software includes two dictionary applets. Both applets help users to
create their own user dictionaries, which can be loaded at startup time or while
the text-to-speech system is active.

Applet Location Comments

userdict /usr/local/bin/userdict
(Linux)

/usr/ucb/userdict (UNIX)

Compiles a user dictionary from a file containing
both the word and its phonemic pronunciation.

windict /usr/local/X11/bin/windict
(Linux)

/usr/ucb/windict (UNIX)

Provides a graphical user interface for:
• Pronouncing words
• Translating words into their phonemic

symbols
• Compiling a user dictionary from a list of

words and their phonemic symbols

Loading the Main Dictionary

The startup function loads the DECtalk Software main pronunciation dictionary:

• /usr/local/lib/DECtalk/dtalk_langcode.dic (Linux)

• /usr/lib/dtk/dtalk_langcode.dic (UNIX)

Replace langcode with the designation for the appropriate language, such as us
for United States English, uk for United Kingdom English, sp for Castilian
Spanish, la for Latin American Spanish, gr for German, or fr for
French; for example, dtalk_us.dic.

On Linux systems, the main dictionary pathnames are defined in the file
/etc/DECtalk.conf at label LANGCODE_dict: (for example, at label
US_dict: for US English).

 3-22

If the dictionary file cannot be found or is loaded improperly, then the startup
function returns an error.

Note

DECtalk Software also provides variants and supplements to the default main
pronunciation dictionaries, as follows:

• dtalk_fl_gr.dic is a supplemental German foreign-language dictionary,
which allows you to include foreign phrases in German speech

• dtalk_grs.dic is a smaller variant of the German main dictionary, which
provides a subset of the content of dtalk_gr.dic

• dtalk_uks.dic is a smaller variant of the U.K. English main dictionary, which
provides a subset of the content of dtalk_gr.dic

• dtalk_usm.dic is a medium-sized variant of the U.S. English main dictionary,
which provides a medium-sized subset of the content of dtalk_us.dic

• dtalk_uss.dic is a smaller variant of the U.S. English main dictionary, which
provides a small subset of the content of dtalk_us.dic

Loading the User Dictionary

The startup function attempts to load the DECtalk Software user pronunciation
dictionary from the user’s home directory:

• $HOME/udict_langcode.dic (Linux)

• $HOME/user.dic (UNIX)

On Linux systems, replace langcode with the designation for the appropriate
language, such as us for United States English, uk for United Kingdom
English, sp for Castilian Spanish, la for Latin American Spanish, gr for
German, or fr for French; for example, udict_us.dic.

On Linux systems, the user dictionary names are defined in the file
/etc/DECtalk.conf at label LANGCODE_udict: (for example, at label
US_udict: for US English).

If the dictionary file is found but cannot be loaded, the startup function returns
an error.

After the startup function has completed successfully, the user can load and
unload user dictionaries by using the TextToSpeechLoadUserDictionary() and
TextToSpeechUnloadUserDictionary() functions.

 3-23

Dictionary Functions (Windows)

DECtalk Software comes with a main dictionary, which is a compiled list of
words and their associated phonemic interpretation. This main dictionary is
loaded during the startup function call. In addition to a main dictionary, users
can create their own user dictionaries and access them using the
TextToSpeechLoadUserDictionary() and
TextToSpeechUnloadUserDictionary() functions.

Creating a User Dictionary

DECtalk Software includes the following files, which help users to create their
own user dictionaries. A user dictionary can be loaded at startup time or while
the text-to-speech system is active.

File Name Location Comments

windic.exe \Program Files\DECtalk Application that has a graphical user
interface and can:

• Pronounce words

• Translate words into their phonemic
symbols

• Compile a user dictionary from a list of
words and their phonemic symbols

user.tab \Program Files\DECtalk Source file used by windic.exe to create
the user dictionary.

Loading the Main Dictionary (Dynamic or Static Engine)

The TextToSpeechStartup() function attempts to find the entry for the
DECtalk Software main pronunciation dictionary in the registry at:

REGISTRY KEY:

HKEY_LOCAL_MACHINE\SOFTWARE\DECtalk Software\DECtalk\version\langcode

Value: MainDict

The dictionary is then set to:

 [user selected dir]\system\dtalk_langcode.dic

Replace version in the path designation with the current version number for
the DECtalk Software, using the format x.xx; for example, 4.61.

 3-24

Replace langcode with the designation for the appropriate language, such as
US for United States English, UK for United Kingdom English, SP for
Castilian Spanish, LA for Latin American Spanish, GR for German, or FR for
French; for example, dtalk_us.dic.

If the MainDict entry, as specified in the registry entry, cannot be found, the
TextToSpeechStartup() call returns a value of MMSYSERR_ERROR. If the
registry entry is missing, then the TextToSpeechStartup() function defaults to
looking in the application’s default directory for DTALK_langcode.dic to be
loaded as the main pronunciation dictionary.

If the main pronunciation dictionary fails to be loaded, the
TextToSpeechStartup() function returns a value of MMSYSERR_ERROR.

Note

DECtalk Software also provides variants and supplements to the default main
pronunciation dictionaries, as follows:

• dtalk_fl_gr.dic is a supplemental German foreign-language dictionary,
which allows you to include foreign phrases in German speech

• dtalk_grs.dic is a smaller variant of the German main dictionary, which
provides a subset of the content of dtalk_gr.dic

• dtalk_uks.dic is a smaller variant of the U.K. English main dictionary, which
provides a subset of the content of dtalk_gr.dic

• dtalk_usm.dic is a medium-sized variant of the U.S. English main dictionary,
which provides a medium-sized subset of the content of dtalk_us.dic

• dtalk_uss.dic is a smaller variant of the U.S. English main dictionary, which
provides a small subset of the content of dtalk_us.dic

Loading the Main Dictionary (Static Engine)

The TextToSpeechStartup() function attempts to find the dictionary in the
home directory of the statically linked application. If that fails, the
TextToSpeechStartup() function then looks in the defined PATH of the
Windows operating system. The file name in either case is
DTALK_langcode.dic. If the PATH look up fails, the value from the
registry entry for the static engine is used. The registry entry for the static
engine is:

REGISTRY KEY:

HKEY_LOCAL_MACHINE\SOFTWARE\DECtalk Software\DECtalk\langcode

 3-25

Value: MainDict

If the main pronunciation dictionary fails to be loaded, the
TextToSpeechStartup() function returns a value of MMSYSERR_ERROR.

Loading the User Dictionary

The TextToSpeechStartup() function attempts to find the entry for the
DECtalk Software user pronunciation dictionary in the registry at:

REGISTRY KEY:

HKEY_CURRENT_USER\Software\DECtalk Software\DECtalk\version\langcode

Value: UserDict

The dictionary is then set to:

[user selected dir]\user.dic

Replace version in the path designation with the current version number for
the DECtalk Software, in the format x.xx; for example, 4.61.

Replace langcode with the designation for the appropriate language, such as
US for United States English, UK for United Kingdom English, SP for
Castilian Spanish, LA for Latin American Spanish, GR for German, or FR for
French.

If the UserDict entry as specified in the registry entry cannot be found, the
TextToSpeechStartup() function returns a value of MMSYSERR_ERROR. If
the registry entry is missing, the TextToSpeechStartup() function defaults to
looking in the application default directory for user.dic to be loaded as the
user pronunciation dictionary.

If the user pronunciation dictionary fails to be loaded, then the
TextToSpeechStartup() function returns a value of MMSYSERR_ERROR.

 3-26

Registry Entry Information

OEM customers can install the 32-bit code for DECtalk Software, together with
other application software, on an end-user computer system, without using the
DECtalk installation software. In such cases, you need to make registry entries
on the end-user system to enable DECtalk Software to work correctly with your
application. When the DECtalk engine starts, it checks for licenses, descriptions,
numbers of instances, and so on in the registry entries.

An installation program that you create to install your application and the
necessary components of DECtalk Software on an end-user system must set up
registry entry information on that system.

In addition to installation considerations, you may also need registry entry
information to resolve some kinds of errors. For example, DECtalk Software
may report that the user dictionary is not found in the expected location. You
can look up registry entry information in the following list to see how to
interpret registry entries correctly and to see what registry entries have changed
in the current version of DECtalk.

Note

Some earlier versions of DECtalk Software use DigitalEquipmentCorporation in
the registry entries, as follows:

HKEY_LOCAL_MACHINE\SOFTWARE\DigitalEquipmentCorporation\DECta
lk\version\langcode

Registry Entry Formats and Locations

[HKEY_LOCAL_MACHINE\SOFTWARE\DECtalk
Software\Classes\CLSID\{clsidno}]
"DECtalk_{langcode}"="DECtalk TTS Engine {langcode}"

[HKEY_LOCAL_MACHINE\SOFTWARE\DECtalk
Software\Classes\CLSID\{clsidno}\InprocServer32]
@="C:\WIN95\Speech\dtlkttse_{langcode}.dll"

[HKEY_LOCAL_MACHINE\SOFTWARE\DECtalk
Software\Classes\Software\DECtalk\{version}
"Version"="DECtalk MultLang version {version}
"Language"="MULTI LANGUAGE"

 3-27

[HKEY_LOCAL_MACHINE\SOFTWARE\DECtalk
Software\Microsoft\Windows\CurrentVersion\App Paths\{appname}.exe]
"Path"="C:\Program Files\DECtalk\;C:\Program Files\DECtalk\Help"
@="C:\Program Files\DECtalk\{appname}.exe"

[HKEY_LOCAL_MACHINE\SOFTWARE\DECtalk
Software\Microsoft\Windows\CurrentVersion\Uninstall\DECtalkDeinstK
ey]
"UninstallString"="C:\WIN95\uninst.exe -f\"C:\Program
Files\DECtalk\DeIsL6.isu\""
"DisplayName"="DECtalk V{version}"

[HKEY_LOCAL_MACHINE\SOFTWARE\DECtalk
Software\Voice\TextToSpeech\Engine]
"DECtalk_{langcode}"="{clsidno}"

[HKEY_LOCAL_MACHINE\SOFTWARE\DECtalk Software\DECtalk\{version}]
"Company"="q"
"Installer"="q"
"LicUpdPwd"="{licpswd}"
"Lock_MGR"="2"
"Licenses"="{liccount}"
"MultiLang"="1"

[HKEY_LOCAL_MACHINE\SOFTWARE\DECtalk
Software\DECtalk\{version}\{langcode}]
"Version"="DECtalk {langcode} version {version}"
"Language"="{langname}"
"MainDict"="C:\Program
Files\DECtalk\{langcode}\DTALK_{langcode}.dic"

[HKEY_LOCAL_MACHINE\SOFTWARE\DECtalk Software\DECtalk\Langs]
"US"="ENGLISH,US"
"DefaultLang"="UK"
"SP"="CASTILIAN SPANISH"
"LA"="LATIN AMERICAN SPANISH"
"GR"="GERMAN"
"UK"="ENGLISH,UK"
"FR"="FRENCH"

[HKEY_CURRENT_USER\Software\DECtalk
Software\DECtalk\{version}\{langcode}]
"UserDict"="C:\Program
Files\DECtalk\{langcode}US\USER_{langcode}.dic"

 3-28

Registry Entry Key

• Where langcode is "US", "UK", "SP", "LA", "GR", or "FR".
Quotation marks are not part of the value.

• Where langname is the language name for a specific

language:

langcode langname
US "ENGLISH,US"
SP "CASTILIAN SPANISH"
LA "LATIN AMERICAN SPANISH"
GR "GERMAN"
UK "ENGLISH,UK"
FR "FRENCH"

Quotation marks are not part of the value.

• Where version is "4.61" or current version number.

• Where appname is the name of an application using

DECtalk.

• Where licpswd is encrypted password for licenseu.exe
program.

• Where liccount is encrypted number of authorized engine

licenses.

• Where clsidno is the CLSID numbers for a specific
langcode:

langcode clsidno
"US" "{ED737300-8FCB-11ce-AB5D-00AA00590F2B}"
"SP" "{99EE9560-A4A6-11d1-BEB2-0060083E8376}"
"LA" "{99EE9550-A4A6-11d1-BEB2-0060083E8376}"
"GR" "{99EE9570-A4A6-11d1-BEB2-0060083E8376}"
"UK" "{99EE9540-A4A6-11d1-BEB2-0060083E8376}"
"FR" "{99EE9580-A4A6-11d1-BEB2-0060083E8376}"

You must include the {} around the clsidno specified.
Quotation marks are not part of value.

 3-29

Sample Programs (UNIX)

Some applets are included with DECtalk Software. These sample applications
are included to demonstrate the use of DECtalk Software APIs. These sources
can be used as templates for other applications that you might want to develop.

Some of the applets demonstrate the DECtalk Software API extension to the
multimedia API specified in the Multimedia Services for Tru64 UNIX software
product. These applets are those that play back speech samples to an audio
device and are built using the libttsmme.so shared library.

Other applets demonstrate the DECtalk Software API that does not include the
multimedia extensions. These applets are those that do not require any audio
devices. These applets can be built using the libtts.so shared library.

Sources to these programs can be found in:

/usr/examples/dtk/dtsamples

The samples and a brief description are listed below.

Applet Description

xmsay Demonstrates the use of DECtalk Software APIs in the Motif windows
environment.

say Converts text into speech samples that are sent to an audio device.

dtmemory Converts text into speech samples stored in memory buffers.

aclock Announces the time at specified intervals.

 3-30

Building Sample Programs

Sample programs can be created from the sources provided in
/usr/examples/dtk/dtsamples. This section describes the procedure
for building the sample programs. Before proceeding, make sure that the
DECtalk Software development kit has been installed. See the DECtalk
Software Installation Guide for more information on different components of
DECtalk Software.

1. Create a local directory in which you want to build the sample programs.

2. Copy all the files in /usr/examples/dtk/dtsamples into the
directory that you just created.

3. Generate a Makefile from the Imakefile by typing:

 usr/bin/X11/xmkmf

4. Compile and link the sample application programs by typing the following
command while still in the directory that you just created:

 make all

5. After the make program completes successfully, the sample programs are
ready to run.

In addition to the sample programs, you will also find some demo text files in
your directory. These files demonstrate some of the DECtalk Software
capabilities.

Header Files

DECtalk Software provides header files that contain all the public data-structure
definitions to which the DECtalk Software API refers. They are ttsapi.h,
dtmmedefs.h, and L_ALL_PH.H. When DECtalk Software is installed,
these files are in /usr/include/dtk.

• ttsapi.h contains definitions of constants used in the DECtalk Software
API functions, data structures that define the buffers that DECtalk Software
returns, and the API function prototype definitions.

• dtmmedefs.h contains the basic data structure definitions used by
DECtalk Software. It also contains definitions of error codes and audio
formats. This file enables you to compile, link, and run certain DECtalk
Software programs even if Multimedia Services for Tru64 UNIX is not

 3-31

installed. Specifically, if you are writing an application program that does
not use the audio drivers, but you want to use DECtalk Software to produce
synthesized speech buffers using the TextToSpeechOpenInMemory()
function, you can use dtmmedefs.h to circumvent the requirement for
Multimedia Services for Tru64 UNIX.

• L_ALL_PH.H contains all phoneme codes for all supported languages.
(Before DECtalk Version 4.61, a separate L_LANGCODE_PH.H file was
provided per language.) Within L_ALL_PH.H, phonemes are listed with a
language prefix, LANGCODE_, where LANGCODE_ is one of the
following:

US_ English (United States)

GR_ German

SP_ Castilian Spanish

LA_ Latin American Spanish

UK_ English (United Kingdom)

FR_ French

Shareable Libraries

DECtalk Software APIs are available to programmers in two shareable libraries.

• libtts.so contains device independent DECtalk Software routines.

• libttsmme.so contains the DECtalk Software library that requires
Multimedia Services for Tru64 UNIX.

As in the case of the header files, if you want to use DECtalk Software to write
an application that produces buffers of synthesized speech, then the program is
linked with the libtts shared library. If, on the other hand, you want to use
Multimedia Services for Tru64 UNIX to communicate with the audio
subsystem, the application has to be linked with the libttsmme shared library.

 3-32

Sample Programs (Windows)

Sample programs include:

dtsample This is an example of a basic Window editor with integrated text-to-speech.

Say This is an example of a command-line program using DECtalk Software.

dtmemory This is an example of synthesis into memory buffers.

ttstst This is a sample program to demonstrate the Microsoft speech API
interfaces supported by the DECtalk Software speech engine.

The sample programs are furnished as examples of simple Windows
applications you can build, using the DECtalk Software API. The source code
for the sample programs is placed in the root directory, \DECTALK\SAMPLE\,
during the installation. These programs include the API definition file
ttsapi.h and are linked with dectalk.lib.

Using the DECtalk Software Development Kit (the Win32 SDK must be
installed):

1. Bring up a Windows console window.

2. Set your default directory to the \DECTALK\SAMPLE\DTSAMPLE directory.

3. Enter nmake

This procedure produces the dtsample.exe executable file. This file can be
executed at the Windows console window or the File Manager.

The dtsample program demonstrates most of the DECtalk Software API
functions. Any application can call any of the API functions by including the
ttsapi header file (ttsapi.h) and linking with the DECtalk Software library
(dectalk.lib), as long as the associated dll file (dectalk.dll) is present.
The dectalk.dll file must be installed and the dictionary file
dectalk.dic must be in the dictionary path in the registry or in the local
directory.

 4-1

Chapter 4 —
Basics of Multi-Language

Programming

Multi-language programming using DECtalk Software requires loading a
DECtalk language, selecting a loaded language for a program thread, starting a
TTS instance, closing the program thread, and closing that language. Swapping
a language requires shutting down and closing the thread and the language
selector. You can load as many languages as you want during the execution of
your program as well as select two or more languages concurrently. The
following steps summarize the methodology to start, select, and close a single
language.

Note

You must start and select a language before using DECtalk Software to speak.

Multi-language programming is supported by the dynamic engine only. The static
engine does not support multi-language programming.

The basic elements of multi-language programming are presented as follows:

• Starting a language

• Selecting a language

• Closing a language

• Multi-language programming example

 4-2

Starting a Language

To start a DECtalk language, use the TextToSpeechStartLang() function to
pass the two-letter name of the language you want to load. After the language is
loaded, you receive a handle to that language. If the language is already loaded,
you get the previously loaded handle to that language as the return value. The
same handle is used for all instances of a language per run. On failure, you
receive a handle with the TTS_LANG_ERROR bit set as defined in
ttsfeat.h

Example:

TextToSpeechStartLang (“uk”)

 Selecting a Language

Before a call can be made to any of the standard DAPI functions, and after you
have the handle to a language, you must select the language. This is
accomplished through the TextToSpeechSelectLang() function. You must
select the language before each call to any DAPI function that does not take in a
valid LPTTS_HANDLE_T handle. The first parameter to
TextToSpeechSelectLang() must be NULL. The second parameter is the
handle retrieved from TextToSpeechStartLang(). The return value from
TextToSpeechSelectLang() is a Boolean value: TRUE signifies success and
FALSE signifies failure.

Example:

TextToSpeechSelectLang (NULL,UKhandle)

Closing a Language

After you close your program threads, use the TextToSpeechCloseLang()
function to close the language. This function accepts the two-character
language name of the language to release and then attempts to release the
language and its associated files. If other threads are still using the language, the
TextToSpeechCloseLang() function reduces the instance counter by one for
that language. The file is free when all language hooks are freed.

Example:

TextToSpeechCloseLang (“uk”)

 4-3

Example

This example shows DECtalk ML allocating English (us), creating a thread,
destroying the thread, and finally closing the language.

void sample(void) {

 unsigned long int UShandle;

 MMRESULT result;

 LPTTS_HANDLE_T phTTS;

 UShandle = TextToSpeechStartLang(“us”);

 if (UShandle & TTS_LANG_ERROR) {

 printf(“Error loading US English\n”);

 exit(1);

 }

 if (TextToSpeechSelectLang(NULL, UShandle) == FALSE) {

 printf(“Error selecting language\n”);

 TextToSpeechCloseLang(“us”);

 exit(1);

 }

 result = TextToSpeechStartup(hWnd, &phTTS, WAVE_MAPPER,

REPORT_OPEN_ERROR);

 if (result != MMSYSERR_NOERROR) {

 printf(“Unable to start DECtalk Speech Engine\n”);

 TextToSpeechCloseLang(“us”);

 exit(1);

 }

 TextToSpeechShutdown(phTTS);

 TextToSpeechCloseLang(“us”);

 printf(“Example completed successfully!\n”);

 return;

}

 Glossary - 1

Glossary

allophone

A positional or free variant of a phoneme.

applet

A small application that normally performs a very specific function and can be used with other
larger applications.

arpabet

A special phonetic alphabet used to write phonemes and syllables.

clause boundary

The natural boundary between two or more clauses in a sentence that helps the listener easily
separate the sentence into its component parts. Commas, periods, exclamation points, question
marks, semi-colons, and colons are symbols used to indicate clause boundaries.

clause mode

The normal mode in which DECtalk Software speaks text a phrase, clause, or sentence at a time.
In clause mode, speaking starts when DECtalk Software is sent a clause terminator (period,
comma, exclamation point, question mark, semi-colon, or colon) followed by a space.

clause terminator

A symbol used to begin and terminate a clause boundary. Symbols can be periods, commas,
exclamation points, question marks, semi-colons, or colons. Each of these symbols must be
followed by a space.

comma pause

The pause DECtalk Software takes in speaking that is equivalent to inserting a comma in a
sentence. Comma pause can be increased and decreased with the Comma Pause in-line
command.

 Glossary - 2

.dic file

The loadable dictionary file created by the User Dictionary Build Tool from a .tab source file.

dynamic engine

A text-to-speech engine that is accessed by applications as .lib files, using a dynamic link library
(DLL). DLLs are software modules in Microsoft Windows operating environments that contain
executable code and data that can be called and used by Windows applications or other DLLs.
Functions and data in a DLL are loaded and linked at run time when they are referenced by a
Windows application or other DLLs. DLLs can be unloaded when the code is no longer needed.
The dynamic engine object code is not part of the application’s executable code, except for
runtime link references to the dynamic engine.

emphatic stress

The emphasis placed on a syllable of a word to give it more meaning.

falling intonation

A decrease in voice pitch.

flush

Process by which the Text-To-Speech system discards data in the system.

heuristic

A method or rule used to decide among several courses of action. Often called a “rule of thumb.”
In the case of DECtalk Software, pronunciation heuristics govern the manner in which DECtalk
Software pronounces words.

homograph

A pair of words that have the same spelling but which are pronounced differently, depending on
which syllable is accented. For example, the pronunciation of permit as a noun and the
pronunciation of permit as a verb.

index marker (flag)

A marker placed in the text stream to synchronize an external event. An index marker is inserted
with the Index Mark command.

 Glossary - 3

intonation

The manner in which a voice imparts extra meaning to speech by adjusting sound durations and
voice pitch. For example, the emphasis and meaning of the sentence, Bill, put in the edits. can be
changed by putting stronger emphasis on the name, Bill. Bill! Put in the edits!

letter mode

The state in which DECtalk Software speaks each letter as it is queued. In word and letter mode,
DECtalk Software does not need to wait for a clause terminator to begin speaking. This
command interacts with the rate selection command so that you can set both rate selection and
letter mode for optimal output.

log file

A file that receives speech output samples that are written as text, phonemes, or syllables. The
phonemes and syllables are written using the arpabet phoneme alphabet.

log-file mode

Log-file mode indicates that the speech samples are to be written as text, phonemes, or syllables
into a log file rather than sent to an audio device. The TextToSpeechOpenLogFile() function
enters the text-to-speech system into a log-file mode. The TextToSpeechCloseLogFile()
function returns the text-to-speech system to the startup state.

morpheme

The minimum syntactic unit of a language that has an important role in determining
pronunciations. For example, spell has only one morpheme, while misspelling is made up of
three: mis, spell, and ing.

period pause

The pause DECtalk Software inserts when it finds a period that marks the end of the sentence.
This pause imitates humans taking a breath. This pause is approximately half a second.

phoneme

The smallest unit of speech that distinguishes one word from another. Phonemes are divided into
vowel and consonant phonemes. DECtalk Software interprets text brackets as phonemes only
after the phoneme arpabet command is used.

phoneme arpabet command

A command that causes all text within brackets to be treated as phonemic text.

 Glossary - 4

phoneme string

Two or more phonemes together used to pronounce a special word or group of words.

phonemicize

To encode words as strings of phonemes.

phonemic mode

A mode that DECtalk Software uses for speaking phoneme strings.

phonemic transcription

A word written the way it is pronounced is said to be in phonemic transcription or simply in
phonemics. When DECtalk Software says a word or phrase not as you intended, you might need
to use phonemic transcription to get the desired pronunciation. For example, [r ’ ehd] is the
phonemic transcription of the past tense verb read.

phrase boundary

A clause boundary formed by terminating punctuation (comma, period, exclamation point,
question mark, semi-colon, colon) followed by a space.

pitch control symbols

Symbols used to override built-in DECtalk Software pitch control. Symbols include pitch rise [/],
pitch fall [\], and pitch rise and fall [/\].

primary stress

Most content words of English (nouns, verbs, adjectives, and adverbs) contain one primary
stressed syllable. The primary stress symbol in DECtalk Software is the apostrophe [’].

proper name

First names, last names, street names, company names, and place names are all examples of
proper names.

secondary stress

A symbol used to indicate a degree of stress that is between primary and unstressed (no stress).
The secondary stress symbol is the grave accent [‘].

 Glossary - 5

silence phonemes

Silences of specified durations inserted into text files in the same manner as you would insert a
phoneme.

speech-to-memory mode

In speech-to-memory mode, speech samples are written into memory buffers rather than sent to
an audio device. The TextToSpeechAddBuffer() function supplies the text-to-speech system
with the memory buffers that it needs. The TextToSpeechOpenInMemory() function causes the
text-to-speech system to enter speech-to-memory mode. The TextToSpeechCloseInMemory()
function returns the text-to-speech system to the startup state.

startup function

Startup function refers to either the TextToSpeechStartup() function or the
TextToSpeechStartupEx() function.

startup state

Startup state indicates that TextToSpeechStartup() or TextToSpeechStartupEx() has been
successfully called and the text-to-speech system is not in one of the three special modes; wave-
file, log-file, or speech-to-memory mode. While in startup state, speech samples are sent to an
audio device or ignored, depending on whether the DO_NOT_USE_AUDIO_DEVICE flag is set
in the dwDeviceOptions parameter of the startup function. If the text-to-speech system is in one
of its special modes, the speech samples are handled accordingly.

static engine

A text-to-speech engine that is accessed by applications as .lib files without using dynamic link
libraries (DLLs). The static engine object code is part of the application’s executable code. See
also dynamic engine.

syntactic function words

A set of words that are either unstressed or have secondary stress. They include prepositions,
conjunctions, determiners, auxiliary verbs, pronouns, question mark, and clause introducers.
DECtalk Software uses stress and syntactic symbols to control aspects of rhythm, stress, and
intonation patterns. These symbols include punctuation marks such as commas, periods, question
marks, and exclamation points.

.tab file

The source file used to build a user dictionary.

 Glossary - 6

user dictionary

The dictionary that you define for DECtalk Software to load and use with an application to
control the pronunciation of specific words processed by the application.

user dictionary builder

An applet included with DECtalk Software to build and compile user dictionaries.

voice-control command

A DECtalk Software in-line command inserted into text strings and used to control basic and
special Text-To-Speech attributes, such as speaking voice and speaking rate.

Wave file

A Microsoft standard file format for storing waveform audio data. Wave files have a .wav file
extension.

wave-file mode

Wave-file mode indicates that the speech samples are to be written to a wave file rather than sent
to an audio device. The TextToSpeechOpenWaveOutFile() function enters the text-to-speech
system into a wave-file mode. The TextToSpeechCloseWaveOutFile() function returns the text-
to-speech system to the startup state.

wave form output

The digitized reproduction of a sound wave form. DECtalk Software produces wave form output
from the Speak applet and the API, both of which allow you to save an ASCII text file to .wav
file format.

word boundary

A white space character (space or tab) in the text that indicates a boundary between words.
DECtalk Software uses word boundary symbols to select the word-beginning or word-ending
allophone of a phoneme.

word mode

A text-processing mode in which DECtalk Software speaks one word at a time. A blank space or
equivalent after a character or string of characters causes that string to be spoken in word mode.

 Index - 1

Index

.

.dic file, 2-11, 2-16

.dot (template) file, 2-23

.tab source file, 2-14, 2-16

A

API
function set, 1-7
introduction, 1-7

application program, 2-1
application programming interface, 1-7
arpabet phoneme alphabet, 3-17
ASCII text, 1-2
audio output control functions, 3-2

B

blocking synchronization function, 3-2, 3-14
buffer, 3-10
buffered speech, 3-10
built-in voices, 2-18
button on a toolbar, 2-26

C

callback parameters, 3-6
callback routines, 3-6
change a speaking voice, 2-7
change the output rate, 2-10
change the speaking rate, 2-20
clause, 3-5
clause buffering, 1-2
clause terminator, 3-5

close a DECtalk language, 4-2
command strings, 1-2
command-line applet, 1-6, 2-32
compiling an existing dictionary, 2-17
configure the TTS server, 2-28
configuring

Text-to-Speech (TTS) server, 2-28
control and status functions, 3-2
core API functions, 3-2
create a macro, 2-26

D

DAPI, 1-7
DAPI function, 4-2
data buffers, 1-7
data-structure definitions, 3-32
DDE. . See Dynamic Data Exchange
DECtalk

features and functions, 1-2
how are the components used?, 1-10
how it works, 1-12
overview, 1-2

DECtalk language. See language
DECtalk Software API (DAPI), 1-7, 3-1
DECtalk Software components, 1-3
DECtalk Software voice set, 2-18
DECtalk TTS Server, 2-22
DECtalk_Visual_Message, 3-6
definitions, data-structure, 3-32
dictionaries, 1-8, 1-9
dictionary applets, 3-21
dictionary file (.dic), 2-11
dictionary file string, 2-28
Dictionary options, 2-33

 Index - 2

DECtalk Speech API. See DECtalk Software API
(DAPI)

drag and drop, 2-4
dwFlags field, 3-16
dwLanguageAttributes element, 3-19
Dynamic Data Exchange

and DECtalk, 2-22
Dynamic Data Exchange (DDE), 2-22
dynamic engine, 3-24, 4-1

E

edit a text file, 2-20
edit text, 2-9
edit the text, 2-10
error and status messages, 3-9
error codes, 3-9

F

functions
audio output control, 3-2
blocking synchronization, 3-2, 3-14
control and status, 3-2
core API, 3-2
loading and unloading a User Dictionary, 3-3
special Text-to-Speech mode, 3-3

H

header files, 3-32
Help options, 2-32
highlighting spoken text, 2-21
how to link the macro, 2-26

I

index and phoneme arrays, 3-20
Index Mark in-line command, 3-14
index marks, 3-9
in-line command

examples of, 2-5
Index Mark, 3-14

syntax rules, 2-5
in-line commands, 1-7
Input options, 2-32
internal (built-in) dictionary, 1-8
intonation, 1-8

L

language
close, 4-2
load, 4-2
name, 4-2
select, 4-2
start, 4-2

languages, 3-32
launching

Text-to-Speech (TTS) server, 2-28
link the macro, 2-26
load a user dictionary, 2-20
loadable dictionary file (.dic), 2-11
loading a User Dictionary function, 3-3
log file, 3-16
LPARAM parameter, 3-9, 3-10
lpData element, 3-17
lpIndexArray element, 3-17
lpLanguageParamsArray element, 3-19
lpPhonemeArray element, 3-17

M

macro, 2-30
macro to run DECtalk with MS Word

associating with toolbar, 2-26
main dictionary, 3-21, 3-24
memory buffer, 3-10
menu selection, 2-26
messages, 3-9
Microsoft Word document, 2-22, 2-23
multi-language programming, 4-1

N

name, language, 4-2

 Index - 3

O

options
Dictionary, 2-33
Help, 2-32
Input, 2-32
Output, 2-32

Output options, 2-32

P

parameters
callback, 3-6
message, 3-6

phoneme alphabet, 3-17
Phoneme command

proper use of brackets with, 2-6
phoneme logging, 3-17
phoneme notifications, 3-6
PHONEME_TAG, 3-6
phonemic interpretation, 3-21
phonemic translations, 2-11, 2-12
play selected segments, 2-20
play selected text, 2-10
power-key combination, 2-26
program applet

Sample, 1-3, 2-1
Speak, 1-5, 2-1, 2-18
User Dictionary Build Tool, 2-1

program control, 2-1
programming aids, 1-7
programming, multi-language, 4-1
pronunciation, 2-14
pronunciation dictionaries, 1-8, 1-9
pull-down menu, 2-7
punctuation, 3-5

R

returned memory buffer, 3-10
rhythmic naturalness, 1-2

S

Sample program applet, 1-3, 2-1
starting from program group, 2-2

sample user-dictionary file, 1-8
save as a WAVE file, 2-21
saving an existing dictionary, 2-17
Say command-line applet, 1-6, 2-32
select a DECtalk language, 4-2
service name, TTSserver, 2-28
service topic names, 2-28
singing, 1-8
single characters, 1-2
Speak program applet, 1-5, 2-1, 2-18
speaker selection, 2-28
speaking a file, 2-3
speaking rate, 1-7, 2-20, 2-28
speaking voice, 1-7, 2-28
special effects, 1-8
special Text-to-Speech mode functions, 3-3
special words, 2-14
speech synthesis, 1-2
start a DECtalk language, 4-2
start the program applet, 2-2
start the TTS server, 2-28
startup routine, 3-16
static engine, 3-25, 4-1
status functions, 3-2
status messages, 3-9
stress, 1-8
structure

TTS_BUFFER_T, 3-17
TTS_CAPS_T, 3-19
TTS_INDEX_T, 3-18
TTS_PHONEME_T, 3-18

supported languages, 3-32
Sync in-line command, 3-5
syntax

for in-line commands, 2-5
syntax rules, 1-8

 Index - 4

T

template, 2-23
text file, 2-20

inserting commands into, 2-5
Text-to-Speech server

configuring, 2-28
for use with applications supporting DDE, 2-22

TextToSpeechLoadUserDictionary, 2-11
TextToSpeechSpeak, 3-6
toolbar, 2-26

associating Word macro with, 2-26
Translate command, 2-11, 2-12
TTS server, 2-28, 2-30. See Text to Speech server

how to configure, 2-28
how to start, 2-28

TTS Server, 2-22
TTS server macro, 2-30
TTS service name, 2-28
TTS_BUFFER_T structure, 3-17
TTS_CAPS_T structure, 3-19
TTS_INDEX_T structure, 3-18
TTS_PHONEME_T structure, 3-18
ttsapi.h file, 3-9

U

unloading a User Dictionary function, 3-3

user dictionary, 2-14, 2-20
user dictionary build tool, 1-7, 1-8
User Dictionary Build Tool, 2-11, 2-14
User Dictionary Build Tool program applet, 2-1
User dictionary selection, 2-28
user-defined dictionary, 1-8
using DECtalk Software in-line commands, 2-8
using the Voice menu, 2-8

V

voice control, 2-1
Voice pull-down menu, 2-7
voice set, 2-18
voice-control commands, 1-7, 1-8
voices, 1-2, 2-18

W

WAVE file, 2-21
window messages, 3-6
Word document, 2-22, 2-23
Word macro, 2-23, 2-28
Word macro to run DECtalk

associating with toolbar, 2-26
creating, 2-23

WPARAM parameter, 3-9

